A PIT-1 Homeodomain Mutant Blocks the Intranuclear Recruitment Of the CCAAT/Enhancer Binding Protein α Required for Prolactin Gene Transcription

The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, including CCAAT/enhancer binding protein α (C/EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular endocrinology (Baltimore, Md.) Md.), 2003-02, Vol.17 (2), p.209-222
Hauptverfasser: Enwright, John F, Kawecki-Crook, Margaret A, Voss, Ty C, Schaufele, Fred, Day, Richard N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pituitary-specific homeodomain protein Pit-1 cooperates with other transcription factors, including CCAAT/enhancer binding protein α (C/EBPα), in the regulation of pituitary lactotrope gene transcription. Here, we correlate cooperative activation of prolactin (PRL) gene transcription by Pit-1 and C/EBPα with changes in the subnuclear localization of these factors in living pituitary cells. Transiently expressed C/EBPα induced PRL gene transcription in pituitary GHFT1–5 cells, whereas the coexpression of Pit-1 and C/EBPα in HeLa cells demonstrated their cooperativity at the PRL promoter. Individually expressed Pit-1 or C/EBPα, fused to color variants of fluorescent proteins, occupied different subnuclear compartments in living pituitary cells. When coexpressed, Pit-1 recruited C/EBPα from regions of transcriptionally quiescent centromeric heterochromatin to the nuclear regions occupied by Pit-1. The homeodomain region of Pit-1 was necessary for the recruitment of C/EBPα. A point mutation in the Pit-1 homeodomain associated with the syndrome of combined pituitary hormone deficiency in humans also failed to recruit C/EBPα. This Pit-1 mutant functioned as a dominant inhibitor of PRL gene transcription and, instead of recruiting C/EBPα, was itself recruited by C/EBPα to centromeric heterochromatin. Together our results suggest that the intranuclear positioning of these factors determines whether they activate or silence PRL promoter activity.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2001-0222