Effects of compressive loading on biomechanical properties of disc and peripheral tissue in a rat tail model
Intervertebral disc degeneration induced by mechanical compression is an important issue in spinal disorder research. In this study, the biomechanical aspect of the rat tail model was investigated. An external loading device equipped with super-elastic TiNi springs was developed to apply a precise l...
Gespeichert in:
Veröffentlicht in: | European spine journal 2009-11, Vol.18 (11), p.1595-1603 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intervertebral disc degeneration induced by mechanical compression is an important issue in spinal disorder research. In this study, the biomechanical aspect of the rat tail model was investigated. An external loading device equipped with super-elastic TiNi springs was developed to apply a precise load to the rat tail. By using this device, rat tail discs were subjected to compressive stress of 0.5 or 1.0 MPa for 2 weeks. Discs in the sham group received an attachment of the device but no loading. After the experimental period, first the intact tail with peripheral tissues (PT) such as tendon and skin and then the retrieved disc without PT were subjected to a uniaxial tension–compression test; biomechanical characteristics such as range of motion (ROM), neutral zone (NZ), and hysteresis loss (HL) were evaluated. Furthermore, the load-bearing contribution of PT in the intact tail was estimated by comparing the load–displacement curves obtained by the mechanical tests performed with and without PT. The experimental findings revealed that the continuous compressive stress induced reduction in disc thickness. The intact tail demonstrated decreases in ROM and NZ as well as increases in HL. On the other hand, the retrieved disc demonstrated increases in ROM, NZ, and HL. Further, a significant increase in the load-bearing contribution of PT was indicated. These findings suggest that the load-bearing capacity of the disc was seriously deteriorated by the application of compressive stress of 0.5 or 1.0 MPa for 2 weeks. |
---|---|
ISSN: | 0940-6719 1432-0932 |
DOI: | 10.1007/s00586-009-1078-6 |