Structure−Activity Relationships Comparing N-(6-Methylpyridin-yl)-Substituted Aryl Amides to 2-Methyl-6-(substituted-arylethynyl)pyridines or 2-Methyl-4-(substituted-arylethynyl)thiazoles as Novel Metabotropic Glutamate Receptor Subtype 5 Antagonists

The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in anxiety, depression, pain, mental retardation, and addiction. The potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1) has been a critically important tool used to further eluc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2009-06, Vol.52 (11), p.3563-3575
Hauptverfasser: Kulkarni, Santosh S, Zou, Mu-Fa, Cao, Jianjing, Deschamps, Jeffrey R, Rodriguez, Alice L, Conn, P. Jeffrey, Newman, Amy Hauck
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in anxiety, depression, pain, mental retardation, and addiction. The potent and selective noncompetitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP, 1) has been a critically important tool used to further elucidate the role of mGluR5 in these CNS disorders. In an effort to provide novel and structurally diverse selective mGluR5 antagonists, we previously described a set of analogues with moderate activity wherein the alkyne bond was replaced with an amide group. In the present report, extended series of both amide and alkyne-based ligands were synthesized. MGluR5 binding and functional data were obtained that identified (1) several novel alkynes with comparable affinities to 1 at mGluR5 (e.g., 10 and 20–23), but (2) most structural variations to the amide template were not well tolerated, although a few potent amides were discovered (e.g., 55 and 56). Several of these novel analogues show drug-like physical properties (e.g., cLogP range = 2−5) that support their use for in vivo investigation into the role of mGluR5 in CNS disorders.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm900172f