Neural response to working memory load varies by dopamine transporter genotype in children
Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2010-11, Vol.53 (3), p.970-977 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 977 |
---|---|
container_issue | 3 |
container_start_page | 970 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 53 |
creator | Stollstorff, Melanie Foss-Feig, Jennifer Cook, Edwin H. Stein, Mark A. Gaillard, William D. Vaidya, Chandan J. |
description | Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7–12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal–striatal–parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1×Load interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei – SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands. |
doi_str_mv | 10.1016/j.neuroimage.2009.12.104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909013937</els_id><sourcerecordid>876238895</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-6c54dbffce537ded0cedaf3320625848765090a1f36ee8309d446bec175bef7e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EoqXwF5AlFqwy2HGc2BskqHhJFWxgw8Zy7Juph8QOdjLV_HvuaEp5bLqKpfudk3vPIYRytuGMt692mwhrTmGyW9jUjOkNr3HSPCDnnGlZadnVD49vKSrFuT4jT0rZMQR5ox6TM5RIITp9Tr5_RiM70gxlTrEAXRK9SflHiFs6wZTygY7Jerq3OUCh_YH6NNspRCSzjSjKC2S6hZiWwww0ROquw-gzxKfk0WDHAs9uvxfk2_t3Xy8_VldfPny6fHNVOSnUUrVONr4fBgdSdB48c-DtIETN2lqqRnWtZJpZPogWQAmmfdO0PTjeyR6GDsQFeX3yndd-Au8g4majmTPGkw8m2WD-ncRwbbZpb2qlVCcUGry8Ncjp5wplMVMoDsbRRkhrMbhCLZTS8l6ykw1juLVG8sV_5C6tOWIOhkvW4l14FFLqRLmcSskw3G3NmTk2bXbmT9Pm2LThNU4alD7_--o74e9qEXh7AgCz3wfIprgAEdMNGdxifAr3_-UXzpPB1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506848090</pqid></control><display><type>article</type><title>Neural response to working memory load varies by dopamine transporter genotype in children</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>ProQuest Central UK/Ireland</source><creator>Stollstorff, Melanie ; Foss-Feig, Jennifer ; Cook, Edwin H. ; Stein, Mark A. ; Gaillard, William D. ; Vaidya, Chandan J.</creator><creatorcontrib>Stollstorff, Melanie ; Foss-Feig, Jennifer ; Cook, Edwin H. ; Stein, Mark A. ; Gaillard, William D. ; Vaidya, Chandan J.</creatorcontrib><description>Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7–12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal–striatal–parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1×Load interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei – SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.12.104</identifier><identifier>PMID: 20053379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions - genetics ; Attention deficit hyperactivity disorder ; Brain ; Brain Mapping ; Caudate ; Child ; Children & youth ; DAT1 ; Dopamine Plasma Membrane Transport Proteins - genetics ; Executive function ; fMRI ; Functional polymorphism ; Genotype ; Humans ; Hyperactivity ; Image Interpretation, Computer-Assisted ; Magnetic Resonance Imaging ; Medical research ; Memory, Short-Term - physiology ; n-back ; Polymorphism, Genetic ; Reaction Time ; Tandem Repeat Sequences - genetics</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-11, Vol.53 (3), p.970-977</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright 2010 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 15, 2010</rights><rights>2009 Elsevier Inc. All rights reserved. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-6c54dbffce537ded0cedaf3320625848765090a1f36ee8309d446bec175bef7e3</citedby><cites>FETCH-LOGICAL-c538t-6c54dbffce537ded0cedaf3320625848765090a1f36ee8309d446bec175bef7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1506848090?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993,64383,64385,64387,72239</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20053379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stollstorff, Melanie</creatorcontrib><creatorcontrib>Foss-Feig, Jennifer</creatorcontrib><creatorcontrib>Cook, Edwin H.</creatorcontrib><creatorcontrib>Stein, Mark A.</creatorcontrib><creatorcontrib>Gaillard, William D.</creatorcontrib><creatorcontrib>Vaidya, Chandan J.</creatorcontrib><title>Neural response to working memory load varies by dopamine transporter genotype in children</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7–12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal–striatal–parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1×Load interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei – SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands.</description><subject>3' Untranslated Regions - genetics</subject><subject>Attention deficit hyperactivity disorder</subject><subject>Brain</subject><subject>Brain Mapping</subject><subject>Caudate</subject><subject>Child</subject><subject>Children & youth</subject><subject>DAT1</subject><subject>Dopamine Plasma Membrane Transport Proteins - genetics</subject><subject>Executive function</subject><subject>fMRI</subject><subject>Functional polymorphism</subject><subject>Genotype</subject><subject>Humans</subject><subject>Hyperactivity</subject><subject>Image Interpretation, Computer-Assisted</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical research</subject><subject>Memory, Short-Term - physiology</subject><subject>n-back</subject><subject>Polymorphism, Genetic</subject><subject>Reaction Time</subject><subject>Tandem Repeat Sequences - genetics</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtv1DAUhS0EoqXwF5AlFqwy2HGc2BskqHhJFWxgw8Zy7Juph8QOdjLV_HvuaEp5bLqKpfudk3vPIYRytuGMt692mwhrTmGyW9jUjOkNr3HSPCDnnGlZadnVD49vKSrFuT4jT0rZMQR5ox6TM5RIITp9Tr5_RiM70gxlTrEAXRK9SflHiFs6wZTygY7Jerq3OUCh_YH6NNspRCSzjSjKC2S6hZiWwww0ROquw-gzxKfk0WDHAs9uvxfk2_t3Xy8_VldfPny6fHNVOSnUUrVONr4fBgdSdB48c-DtIETN2lqqRnWtZJpZPogWQAmmfdO0PTjeyR6GDsQFeX3yndd-Au8g4majmTPGkw8m2WD-ncRwbbZpb2qlVCcUGry8Ncjp5wplMVMoDsbRRkhrMbhCLZTS8l6ykw1juLVG8sV_5C6tOWIOhkvW4l14FFLqRLmcSskw3G3NmTk2bXbmT9Pm2LThNU4alD7_--o74e9qEXh7AgCz3wfIprgAEdMNGdxifAr3_-UXzpPB1g</recordid><startdate>20101115</startdate><enddate>20101115</enddate><creator>Stollstorff, Melanie</creator><creator>Foss-Feig, Jennifer</creator><creator>Cook, Edwin H.</creator><creator>Stein, Mark A.</creator><creator>Gaillard, William D.</creator><creator>Vaidya, Chandan J.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope><scope>5PM</scope></search><sort><creationdate>20101115</creationdate><title>Neural response to working memory load varies by dopamine transporter genotype in children</title><author>Stollstorff, Melanie ; Foss-Feig, Jennifer ; Cook, Edwin H. ; Stein, Mark A. ; Gaillard, William D. ; Vaidya, Chandan J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-6c54dbffce537ded0cedaf3320625848765090a1f36ee8309d446bec175bef7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>Attention deficit hyperactivity disorder</topic><topic>Brain</topic><topic>Brain Mapping</topic><topic>Caudate</topic><topic>Child</topic><topic>Children & youth</topic><topic>DAT1</topic><topic>Dopamine Plasma Membrane Transport Proteins - genetics</topic><topic>Executive function</topic><topic>fMRI</topic><topic>Functional polymorphism</topic><topic>Genotype</topic><topic>Humans</topic><topic>Hyperactivity</topic><topic>Image Interpretation, Computer-Assisted</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical research</topic><topic>Memory, Short-Term - physiology</topic><topic>n-back</topic><topic>Polymorphism, Genetic</topic><topic>Reaction Time</topic><topic>Tandem Repeat Sequences - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stollstorff, Melanie</creatorcontrib><creatorcontrib>Foss-Feig, Jennifer</creatorcontrib><creatorcontrib>Cook, Edwin H.</creatorcontrib><creatorcontrib>Stein, Mark A.</creatorcontrib><creatorcontrib>Gaillard, William D.</creatorcontrib><creatorcontrib>Vaidya, Chandan J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stollstorff, Melanie</au><au>Foss-Feig, Jennifer</au><au>Cook, Edwin H.</au><au>Stein, Mark A.</au><au>Gaillard, William D.</au><au>Vaidya, Chandan J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural response to working memory load varies by dopamine transporter genotype in children</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-11-15</date><risdate>2010</risdate><volume>53</volume><issue>3</issue><spage>970</spage><epage>977</epage><pages>970-977</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7–12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal–striatal–parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1×Load interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei – SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>20053379</pmid><doi>10.1016/j.neuroimage.2009.12.104</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2010-11, Vol.53 (3), p.970-977 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2888738 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; ProQuest Central UK/Ireland |
subjects | 3' Untranslated Regions - genetics Attention deficit hyperactivity disorder Brain Brain Mapping Caudate Child Children & youth DAT1 Dopamine Plasma Membrane Transport Proteins - genetics Executive function fMRI Functional polymorphism Genotype Humans Hyperactivity Image Interpretation, Computer-Assisted Magnetic Resonance Imaging Medical research Memory, Short-Term - physiology n-back Polymorphism, Genetic Reaction Time Tandem Repeat Sequences - genetics |
title | Neural response to working memory load varies by dopamine transporter genotype in children |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20response%20to%20working%20memory%20load%20varies%20by%20dopamine%20transporter%20genotype%20in%20children&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Stollstorff,%20Melanie&rft.date=2010-11-15&rft.volume=53&rft.issue=3&rft.spage=970&rft.epage=977&rft.pages=970-977&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.12.104&rft_dat=%3Cproquest_pubme%3E876238895%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506848090&rft_id=info:pmid/20053379&rft_els_id=S1053811909013937&rfr_iscdi=true |