Neural response to working memory load varies by dopamine transporter genotype in children
Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2010-11, Vol.53 (3), p.970-977 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inheriting two (10/10) relative to one (9/10) copy of the 10-repeat allele of the dopamine transporter genotype (DAT1) is associated with Attention Deficit Hyperactivity Disorder, a childhood disorder marked by poor executive function. We examined whether functional anatomy underlying working memory, a component process of executive function, differed by DAT1 in 7–12 year-old typically developing children. 10/10 and 9/10 carriers performed a verbal n-back task in two functional magnetic resonance imaging (fMRI) runs varying in working memory load, high (2-back vs. 1-back) and low (1-back vs. 0-back). Performance accuracy was superior in 9/10 than 10/10 carriers in the high but not low load runs. Examination of each run separately revealed that frontal–striatal–parietal regions were more activated in 9/10 than 10/10 carriers in the high load run; the groups did not differ in the low load run. Examination of load effects revealed a DAT1×Load interaction in the right hemisphere in the caudate, our a priori region of interest. Exploratory analysis at a more liberal threshold revealed this interaction in other basal ganglia regions (putamen, and substantial nigra/subthalamic nuclei – SN/STN) and in medial parietal cortex (left precuneus). The striatal and parietal regions were more activated in 9/10 carriers under high than low load, and DAT1 differences (9/10>10/10) were evident only under high load. In contrast, SN/STN tended to be more activated in 10/10 carriers under low than high load and DAT1 differences (10/10>9/10) were evident only under low load. Thus, 10-repeat homozygosity of DAT1 was associated with reduced performance and a lack of increased basal ganglia involvement under higher working memory demands. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2009.12.104 |