Catalytic Mechanism of Heparinase II Investigated by Site-directed Mutagenesis and the Crystal Structure with Its Substrate

Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a β-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-06, Vol.285 (26), p.20051-20061
Hauptverfasser: Shaya, David, Zhao, Wenjing, Garron, Marie-Line, Xiao, Zhongping, Cui, Qizhi, Zhang, Zhenqing, Sulea, Traian, Linhardt, Robert J., Cygler, Miroslaw
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heparinase II (HepII) is an 85-kDa dimeric enzyme that depolymerizes both heparin and heparan sulfate glycosaminoglycans through a β-elimination mechanism. Recently, we determined the crystal structure of HepII from Pedobacter heparinus (previously known as Flavobacterium heparinum) in complex with a heparin disaccharide product, and identified the location of its active site. Here we present the structure of HepII complexed with a heparan sulfate disaccharide product, proving that the same binding/active site is responsible for the degradation of both uronic acid epimers containing substrates. The key enzymatic step involves removal of a proton from the C5 carbon (a chiral center) of the uronic acid, posing a topological challenge to abstract the proton from either side of the ring in a single active site. We have identified three potential active site residues equidistant from C5 and located on both sides of the uronate product and determined their role in catalysis using a set of defined tetrasaccharide substrates. HepII H202A/Y257A mutant lost activity for both substrates and we determined its crystal structure complexed with a heparan sulfate-derived tetrasaccharide. Based on kinetic characterization of various mutants and the structure of the enzyme-substrate complex we propose residues participating in catalysis and their specific roles.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M110.101071