Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson's disease

HPLC was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of B. caapi. The extracts were simultaneously tested in vitro for inhibition of human MAO-A and antioxidant activity in order to correlate phytochemical composition of the extracts and bioactivities. Ban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2010-04, Vol.128 (3), p.662-671
Hauptverfasser: Wang, Yan-Hong, Samoylenko, Volodymyr, Tekwani, Babu L., Khan, Ikhlas A., Miller, Loren S., Chaurasiya, Narayan D., Rahman, Md. Mostafizur, Tripathi, Lalit M., Khan, Shabana I., Joshi, Vaishali C., Wigger, Frank T., Muhammad, Ilias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:HPLC was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of B. caapi. The extracts were simultaneously tested in vitro for inhibition of human MAO-A and antioxidant activity in order to correlate phytochemical composition of the extracts and bioactivities. Banisteriopsis caapi, a woody vine from the Amazonian basin, is popularly known as an ingredient of a sacred drink ayahuasca, widely used throughout the Amazon as a medicinal tea for healing and spiritual exploration. The usefulness of Banisteriopsis caapi has been established for alleviating symptoms of neurological disorders including Parkinson's disease. Primary objective of this study was to develop the process for preparing standardized extracts of Banisteriopsis caapi to achieve high potency for inhibition of human monoamine oxidases (MAO) and antioxidant properties. The aqueous extracts prepared from different parts of the plant collected from different geographical locations and seasons were analyzed by HPLC for principal bioactive markers. The extracts were simultaneously tested in vitro for inhibition of human MAOs and antioxidant activity for analysis of correlation between phytochemical composition of the extracts and bioactivities. Reversed-phase HPLC with photodiode array detection was employed to profile the alkaloidal and non-alkaloidal components of the aqueous extract of Banisteriopsis caapi. The Banisteriopsis caapi extracts and standardized compositions were tested in vitro for inhibition of recombinant preparations of human MAO-A and MAO-B. In vitro cell-based assays were employed for evaluation of antioxidant property and mammalian cell cytotoxicity of these preparations. Among the different aerial parts, leaves, stems/large branches and stem bark of Banisteriopsis caapi, HPLC analysis revealed that most of the dominant chemical and bioactive markers (1, 2, 5, 7–9) were present in high concentrations in dried bark of large branch. A library of HPLC chromatograms has also been generated as a tool for fingerprinting and authentication of the studied Banisteriopsis caapi species. The correlation between potency of MAO inhibition and antioxidant activity with the content of the main active constituents of the aqueous Banisteriopsis caapi extracts and standardized compositions was established. Phytochemical analysis of regular/commercial Banisteriopsis caapi dried stems, obtained from different sources, showed a similar qualitative HPLC profile, bu
ISSN:0378-8741
1872-7573
DOI:10.1016/j.jep.2010.02.013