Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta

The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of structural biology 2009-12, Vol.168 (3), p.539-547
Hauptverfasser: Brunner, E., Ehrlich, H., Schupp, P., Hedrich, R., Hunoldt, S., Kammer, M., Machill, S., Paasch, S., Bazhenov, V.V., Kurek, D.V., Arnold, T., Brockmann, S., Ruhnow, M., Born, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons using an isolation and purification technique based on treatment with alkaline solutions. Solid-state 13C NMR, Raman, and FT-IR spectroscopies, as well as chitinase digestion, reveal that the isolated material indeed consists of chitin. The morphology of the scaffolds has been determined by light and electron microscopy. It consists of cross-linked chitin fibers approximately 40–100 nm in diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. Solid-state 13C NMR spectroscopy was used to characterize the sponge skeleton on a molecular level. The 13C NMR signals of the chitin-based scaffolds are relatively broad, indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction confirms that the scaffolds isolated from I. basta consist of partially disordered and loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of α-chitin than β-chitin.
ISSN:1047-8477
1095-8657
DOI:10.1016/j.jsb.2009.06.018