Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis

Natural cis-antisense siRNAs (cis-nat-siRNAs) are a recently characterized class of small regulatory RNAs that are widespread in eukaryotes. Despite their abundance, the importance of their regulatory activity is largely unknown. The only functional role for eukaryotic cis-nat-siRNAs that has been d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes & development 2010-05, Vol.24 (10), p.1010-1021
Hauptverfasser: Ron, Mily, Alandete Saez, Monica, Eshed Williams, Leor, Fletcher, Jennifer C, McCormick, Sheila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural cis-antisense siRNAs (cis-nat-siRNAs) are a recently characterized class of small regulatory RNAs that are widespread in eukaryotes. Despite their abundance, the importance of their regulatory activity is largely unknown. The only functional role for eukaryotic cis-nat-siRNAs that has been described to date is in environmental stress responses in plants. Here we demonstrate that cis-nat-siRNA-based regulation plays key roles in Arabidopsis reproductive function, as it facilitates gametophyte formation and double fertilization, a developmental process of enormous agricultural value. We show that male gametophytic kokopelli (kpl) mutants display frequent single-fertilization events, and that KPL and a inversely transcribed gene, ARIADNE14 (ARI14), which encodes a putative ubiquitin E3 ligase, generate a sperm-specific nat-siRNA pair. In the absence of KPL, ARI14 RNA levels in sperm are increased and fertilization is impaired. Furthermore, ARI14 transcripts accumulate in several siRNA biogenesis pathway mutants, and overexpression of ARI14 in sperm phenocopies the reduced seed set of the kokopelli mutants. These results extend the regulatory capacity of cis-nat-siRNAs to development by identifying a role for cis-nat-siRNAs in controlling sperm function during double fertilization.
ISSN:0890-9369
1549-5477
DOI:10.1101/gad.1882810