Point Mutation of a Plastidic Invertase Inhibits Development of the Photosynthetic Apparatus and Enhances Nitrate Assimilation in Sugar-treated Arabidopsis Seedlings

Because the photosynthetic apparatus contains a massive amount of nitrogen in plants, the regulation of its development by sugar signals is important to the maintenance of the carbon-nitrogen balance. In this study we isolated an Arabidopsis mutant (sicy-192) whose cotyledon greening was inhibited b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-05, Vol.285 (20), p.15399-15407
Hauptverfasser: Tamoi, Masahiro, Tabuchi, Tomoki, Demuratani, Masayo, Otori, Kumi, Tanabe, Noriaki, Maruta, Takanori, Shigeoka, Shigeru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because the photosynthetic apparatus contains a massive amount of nitrogen in plants, the regulation of its development by sugar signals is important to the maintenance of the carbon-nitrogen balance. In this study we isolated an Arabidopsis mutant (sicy-192) whose cotyledon greening was inhibited by treatments with sugars such as sucrose, glucose, and fructose. In the mutant, the gene encoding plastidic alkaline/neutral invertase (INV-E) was point-mutated at codon 294, with Tyr substituted for Cys (C294Y). Interestingly, the greening of cotyledons in the knock-out INV-E lines was not inhibited by treatment with the sugars. In addition, the knock-out INV-E lines expressing an INV-E:C294Y or INV-E:C294A gene had the same phenotype as sicy-192 mutants, whereas the lines expressing a wild-type INV-E gene had the same phenotype as wild-type plants. A recombinant INV-E:C294Y protein had the same enzymatic activity as a recombinant INV-E protein, suggesting that the Cys-294 residue of INV-E is important for its functions in the chloroplasts. On treatment with sucrose, the expression of photosynthesis-related genes was weaker in seedlings of mutant plants than wild-type seedlings, whereas the activity of nitrate reductase was stronger in the mutant plants than wild-type plants. These findings suggest that Cys-294 of INV-E is associated with the development of the photosynthetic apparatus and the assimilation of nitrogen in Arabidopsis seedlings to control the ratio of sucrose content to hexose content.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.055111