Low Density Lipoprotein Receptor-related Protein 1 (LRP1) Forms a Signaling Complex with Platelet-derived Growth Factor Receptor-β in Endosomes and Regulates Activation of the MAPK Pathway

In addition to its endocytic function, the low density lipoprotein receptor-related protein 1 (LRP1) also contributes to cell signaling events. In the current study, the potential of LRP1 to modulate the platelet-derived growth factor (PDGF) signaling pathway was investigated. PDGF is a key regulato...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2010-05, Vol.285 (19), p.14308-14317
Hauptverfasser: Muratoglu, Selen Catania, Mikhailenko, Irina, Newton, Christopher, Migliorini, Mary, Strickland, Dudley K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In addition to its endocytic function, the low density lipoprotein receptor-related protein 1 (LRP1) also contributes to cell signaling events. In the current study, the potential of LRP1 to modulate the platelet-derived growth factor (PDGF) signaling pathway was investigated. PDGF is a key regulator of cell migration and proliferation and mediates the tyrosine phosphorylation of LRP1 within its cytoplasmic domain. In WI-38 fibroblasts, PDGF-mediated LRP1 tyrosine phosphorylation occurred at 37 °C but not at 4 °C, where endocytosis is minimized. Furthermore, blockade of endocytosis with the dynamin inhibitor, dynasore, also prevented PDGF-mediated LRP1 tyrosine phosphorylation. Immunofluorescence studies revealed co-localization of LRP1 with the PDGF receptor after PDGF treatment within endosomal compartments, whereas surface biotinylation experiments confirmed that phosphorylated LRP1 primarily originates from intracellular compartments. Together, the data reveal the association of these two receptors in endosomal compartments where they form a signaling complex. To study the contribution of LRP1 to PDGF signaling, we used mouse embryonic fibroblasts genetically deficient in LRP1 and identified phenotypic changes in these cell lines in response to PDGF stimulation by performing phospho-site profiling. Of 38 phosphorylated proteins analyzed, 8 were significantly different in LRP1 deficient fibroblasts and were restored when LRP1 was expressed back in these cells. Importantly, the results revealed that LRP1 expression is necessary for PDGF-mediated activation of ERK. Overall, the studies reveal that LRP1 associates with the PDGF receptor in endosomal compartments and modulates its signaling properties affecting the MAPK and Akt/phosphatidylinositol 3-kinase pathways.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.046672