The interactive effects of methylphenidate and ethanol on ethanol consumption and locomotor activity in mice

The concomitant use of alcohol (EtOH) and the psychotherapeutic agent dl-methylphenidate (MPH) has risen as a consequence of an increase in ADHD diagnoses within the drinking age population. It was recently found that the combination of MPH and EtOH increases the self-report of pleasurable feelings...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmacology, biochemistry and behavior biochemistry and behavior, 2010-05, Vol.95 (3), p.267-272
Hauptverfasser: Griffin, William C., Novak, Andrew J., Middaugh, Lawrence D., Patrick, Kennerly S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concomitant use of alcohol (EtOH) and the psychotherapeutic agent dl-methylphenidate (MPH) has risen as a consequence of an increase in ADHD diagnoses within the drinking age population. It was recently found that the combination of MPH and EtOH increases the self-report of pleasurable feelings relative to MPH alone. This finding raises concerns regarding the combined abuse liability for these two widely used drugs. The present behavioral study reports on the development of an adult male C57BL/6J (B6) mouse model to further characterize this MPH–EtOH interaction. We examined the effects of MPH on EtOH consumption in a limited access paradigm and EtOH stimulation of locomotor activity. B6 mice consumed about 2 g/kg EtOH daily and MPH dose-dependently reduced drinking. The most effective dose of MPH was 1.25 mg/kg, which produced a 41% decrease in drinking and had no effect on locomotor activity. However, when the 1.25 mg/kg dose of MPH was combined with a stimulatory dose of ethanol (1.75 g/kg) by intraperitoneal injection, there was a significantly enhanced stimulation of locomotor activity. The drug combination increased activity compared to the vehicle or MPH injections by 45% and increased the activity relative to EtOH alone by an additional 25%. The results of the EtOH and MPH interactions observed with the mouse model appear to be behaviorally relevant and suggest several converging mechanisms that may underlie MPH–EtOH interactions.
ISSN:0091-3057
1873-5177
DOI:10.1016/j.pbb.2010.01.009