A Novel Protease-activated Receptor-1 Interactor, Bicaudal D1, Regulates G Protein Signaling and Internalization
Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that plays critical roles in cancer, angiogenesis, inflammation, and thrombosis. Proteolytic cleavage of the extracellular domain of PAR1 generates a tethered ligand that activates PAR1 in an unusual intramolecular mode. The signal...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-04, Vol.285 (15), p.11402-11410 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Protease-activated receptor-1 (PAR1) is a G protein-coupled receptor that plays critical roles in cancer, angiogenesis, inflammation, and thrombosis. Proteolytic cleavage of the extracellular domain of PAR1 generates a tethered ligand that activates PAR1 in an unusual intramolecular mode. The signal emanating from the irreversibly cleaved PAR1 is terminated by G protein uncoupling and internalization; however, the mechanisms of PAR1 signal shut off still remain unclear. Using a yeast two-hybrid screen, we identified Bicaudal D1 (BicD1) as a direct interactor with the C-terminal cytoplasmic domain of PAR1. BICD was originally identified as an essential developmental gene associated with mRNA and Golgi-endoplasmic reticulum transport. We discovered a novel function of BicD1 in the modulation of G protein signaling, cell proliferation, and endocytosis downstream of PAR1. BicD1 and its C-terminal CC3 domain inhibited PAR1 signaling to Gq-phospholipase C-β through coiled-coil interactions with the cytoplasmic 8th helix of PAR1. Unexpectedly, BicD1 was also found to be a potent suppressor of PAR1-driven proliferation of breast carcinoma cells. The growth-suppressing effects of BicD1 required the ability to interact with the 8th helix of PAR1. Silencing of BicD1 expression impaired endocytosis of PAR1, and BicD1 co-localized with PAR1 and tubulin, implicating BicD1 as an important adapter protein involved in the transport of PAR1 from the plasma membrane to endosomal vesicles. Together, these findings provide a link between PAR1 signal termination and internalization through the non-G protein effector, BicD1. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M110.105403 |