Alanine-shaving Mutagenesis to Determine Key Interfacial Residues Governing the Assembly of a Nano-cage Maxi-ferritin
The fundamental process of protein self-assembly is governed by protein-protein interactions between subunits, which combine to form structures that are often on the nano-scale. The nano-cage protein, bacterioferritin from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the b...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-04, Vol.285 (16), p.12078-12086 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The fundamental process of protein self-assembly is governed by protein-protein interactions between subunits, which combine to form structures that are often on the nano-scale. The nano-cage protein, bacterioferritin from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the basis for an alanine-shaving mutagenesis study to discover key amino acid residues at symmetry-related protein-protein interfaces that control protein stability and self-assembly. By inspection of these interfaces and “virtual alanine scanning,” nine mutants were designed, expressed, purified, and characterized using transmission electron microscopy, size exclusion chromatography, dynamic light scattering, native PAGE, and temperature-dependent CD. Many of the selected amino acids act as hot spot residues. Four of these (Arg-30, which is located at the two-fold axis, and Arg-61, Tyr-114, and Glu-128, which are located at the three-fold axis), when individually mutated to alanine, completely shut down detectable solution formation of 24-mer, favoring a cooperatively folded dimer, suggesting that they may be oligomerization “switch residues.” Furthermore, two residues, Arg-30 and Arg-61, when changed to alanine form mutants that are more thermodynamically stable than the native protein. This investigation into the structure and energetics of this self-assembling nano-cage protein not only can act as a jumping off point for the eventual design of novel protein nano-structures but can also help to understand the role that structure plays on the function of this important class of proteins. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109.092445 |