Role of CXC chemokine ligand 13 in oral squamous cell carcinoma associated osteolysis in athymic mice

Oral squamous cell carcinomas (OSCC) are malignant tumors with a potent activity of local bone invasion; however, the molecular mechanisms of tumor osteolysis are unclear. In this study, we identified high level expression of chemokine ligand, CXCL13 and RANK ligand (RANKL) in OSCC cells (SCC1, SCC1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of cancer 2010-05, Vol.126 (10), p.2319-2329
Hauptverfasser: Pandruvada, Subramanya N.M., Yuvaraj, Sambandam, Liu, Xiang, Sundaram, Kumaran, Shanmugarajan, Srinivasan, Ries, William L., Norris, James S., London, Steven D., Reddy, Sakamuri V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oral squamous cell carcinomas (OSCC) are malignant tumors with a potent activity of local bone invasion; however, the molecular mechanisms of tumor osteolysis are unclear. In this study, we identified high level expression of chemokine ligand, CXCL13 and RANK ligand (RANKL) in OSCC cells (SCC1, SCC12 and SCC14a). OSCC cell‐conditioned media (20%) induced osteoclast differentiation which was inhibited by OPG in peripheral blood monocyte cultures indicating that OSCC cells produce soluble RANKL. Recombinant hCXCL13 (10 ng/ml) significantly enhanced RANKL‐stimulated osteoclast differentiation in these cultures. Trans‐well migration assay identified that CXCL13 induces chemotaxis of peripheral blood monocytes in vitro which was inhibited by addition of anti‐CXCR5 receptor antibody. Zymogram analysis of conditioned media from OSCC cells revealed matrix metalloproteinase‐9 (MMP‐9) activity. Interestingly, CXCL13 treatment to OSCC cells induced CXCR5 and MMP‐9 expression suggesting an autocrine regulatory function in OSCC cells. To examine the OSCC tumor cell bone invasion/osteolysis, we established an in vivo model for OSCC by subcutaneous injection of OSCC cells onto the surface of calvaria in NCr‐nu/nu athymic mice, which developed tumors in 4–5 weeks. μCT analysis revealed numerous osteolytic lesions in calvaria from OSCC tumor‐bearing mice. Histochemical staining of calvarial sections from these mice revealed a significant increase in the numbers of TRAP‐positive osteoclasts at the tumor‐bone interface. Immunohistochemical analysis confirmed CXCL13 and MMP‐9 expression in tumor cells. Thus, our data implicate a functional role for CXCL13 in bone invasion and may be a potential therapeutic target to prevent osteolysis associated with OSCC tumors in vivo.
ISSN:0020-7136
1097-0215
DOI:10.1002/ijc.24920