Characterization of an Asymmetric Occluded State of P-glycoprotein with Two Bound Nucleotides: IMPLICATIONS FOR CATALYSIS
P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However,...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2010-03, Vol.285 (10), p.7575-7586 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | P-glycoprotein (ABCB1), a member of the ABC superfamily, functions as an ATP-driven multidrug efflux pump. The catalytic cycle of ABC proteins is believed to involve formation of a sandwich dimer in which two ATP molecules are bound at the interface of the nucleotide binding domains (NBDs). However, such dimers have only been observed in isolated NBD subunits and catalytically arrested mutants, and it is still not understood how ATP hydrolysis is coordinated between the two NBDs. We report for the first time the characterization of an asymmetric state of catalytically active native P-glycoprotein with two bound molecules of adenosine 5'-(γ-thio)triphosphate (ATPγS), one of low affinity (Kd 0.74 mM), and one "occluded" nucleotide of 120-fold higher affinity (Kd 6 μM). ATPγS also interacts with P-glycoprotein with high affinity as assessed by inhibition of ATP hydrolysis and protection from covalent labeling of a Walker A Cys residue, whereas other non-hydrolyzable ATP analogues do not. Binding of ATPγS (but not ATP) causes Trp residue heterogeneity, as indicated by collisional quenching, suggesting that it may induce conformational asymmetry. Asymmetric ATPγS-bound P-glycoprotein does not display reduced binding affinity for drugs, implying that transport is not driven by ATP binding and likely takes place at a later stage of the catalytic cycle. We propose that this asymmetric state with two bound nucleotides represents the next intermediate on the path toward ATP hydrolysis after nucleotide binding, and an alternating sites mode of action is achieved by simultaneous switching of the two active sites between high and low affinity states. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109.047290 |