RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice
RNA interference (RNAi)–mediated knockdown of gene expression offers a novel treatment strategy for human immunodeficiency virus (HIV) infection. However, the major hurdle for clinical use is a practical strategy for small interfering RNA (siRNA) delivery to the multiple immune cell types important...
Gespeichert in:
Veröffentlicht in: | Molecular therapy 2010-02, Vol.18 (2), p.370-376 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA interference (RNAi)–mediated knockdown of gene expression offers a novel treatment strategy for human immunodeficiency virus (HIV) infection. However, the major hurdle for clinical use is a practical strategy for small interfering RNA (siRNA) delivery to the multiple immune cell types important in viral pathogenesis. We have developed a novel immunoliposome method targeting the lymphocyte function–associated antigen-1 (LFA-1) integrin expressed on all leukocytes and evaluated it for systemic delivery of siRNA in a humanized mouse model. We show that in vivo administration of the LFA-1 integrin–targeted and stabilized nanoparticles (LFA-1 I-tsNPs) results in selective uptake of siRNA by T cells and macrophages, the prime targets of HIV. Further, in vivo administration of anti-CCR5 siRNA/LFA-1 I-tsNPs resulted in leukocyte-specific gene silencing that was sustained for 10 days. Finally, humanized mice challenged with HIV after anti-CCR5 siRNA treatment showed enhanced resistance to infection as assessed by the reduction in plasma viral load and disease-associated CD4 T-cell loss. This study demonstrates the potential in vivo applicability of LFA-1-directed siRNA delivery as anti-HIV prophylaxis. |
---|---|
ISSN: | 1525-0016 1525-0024 |
DOI: | 10.1038/mt.2009.271 |