Rhesus macaque brain morphometry: A methodological comparison of voxel-wise approaches

Voxel-based morphometry studies have become increasingly common in human neuroimaging over the past several years; however, few studies have utilized this method to study morphometry changes in non-human primates. Here we describe the application of voxel-wise morphometry methods to the rhesus macaq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods (San Diego, Calif.) Calif.), 2010-03, Vol.50 (3), p.157-165
Hauptverfasser: McLaren, Donald G., Kosmatka, Kristopher J., Kastman, Erik K., Bendlin, Barbara B., Johnson, Sterling C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Voxel-based morphometry studies have become increasingly common in human neuroimaging over the past several years; however, few studies have utilized this method to study morphometry changes in non-human primates. Here we describe the application of voxel-wise morphometry methods to the rhesus macaque ( Macaca mulatta) using the 112RM-SL template and priors (McLaren et al. (2009) [42]) and as an illustrative example we describe age-associated changes in grey matter morphometry. Specifically, we evaluated the unified segmentation routine implemented using Statistical Parametric Mapping (SPM) software and the FMRIB’s Automated Segmentation Tool (FAST) in the FMRIB Software Library (FSL); the effect of varying the smoothing kernel; and the effect of the normalization routine. We found that when studying non-human primates, brain images need less smoothing than in human studies, 2–4 mm FWHM. Using flow field deformations (DARTEL) improved inter-subject alignment leading to results that were more likely due to morphometry differences as opposed to registration differences.
ISSN:1046-2023
1095-9130
DOI:10.1016/j.ymeth.2009.10.003