Estrogen utilization of IGF-1-R and EGF-R to signal in breast cancer cells

As breast cancer cells develop secondary resistance to estrogen deprivation therapy, they increase their utilization of non-genomic signaling pathways. Our prior work demonstrated that estradiol causes an association of ERα with Shc, Src and the IGF-1-R. In cells developing resistance to estrogen de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of steroid biochemistry and molecular biology 2010-02, Vol.118 (4), p.219-230
Hauptverfasser: Song, Robert X.-D., Chen, Yuchai, Zhang, Zhenguo, Bao, Yongde, Yue, Wei, Wang, Ji-Ping, Fan, Ping, Santen, Richard J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As breast cancer cells develop secondary resistance to estrogen deprivation therapy, they increase their utilization of non-genomic signaling pathways. Our prior work demonstrated that estradiol causes an association of ERα with Shc, Src and the IGF-1-R. In cells developing resistance to estrogen deprivation (surrogate for aromatase inhibition) and to the anti-estrogens tamoxifen, 4-OH-tamoxifen, and fulvestrant, an increased association of ERα with c-Src and the EGF-R occurs. At the same time, there is a translocation of ERα out of the nucleus and into the cytoplasm and cell membrane. Blockade of c-Src with the Src kinase inhibitor, PP-2 causes relocation of ERα into the nucleus. While these changes are not identical in response to each anti-estrogen, ERα binding to the EGF-R is increased in response to 4-OH-tamoxifen when compared with tamoxifen. The changes in EGF-R interactions with ERα impart an enhanced sensitivity of tamoxifen-resistant cells to the inhibitory properties of the specific EGF-R tyrosine kinase inhibitor, AG 1478. However, with long term exposure of tamoxifen-resistant cells to AG 1478, the cells begin to re-grow but can now be inhibited by the IGF-R tyrosine kinase inhibitor, AG 1024. These data suggest that the IGF-R system becomes the predominant signaling mechanism as an adaptive response to the EGF-R inhibitor. Taken together, this information suggests that both the EGF-R and IGF-R pathways can mediate ERα signaling. To further examine the effects of fulvestrant on ERα function, we examined the acute effects of fulvestrant, on non-genomic functionality. Fulvestrant enhanced ERα association with the membrane IGF-1-receptor (IGF-1-R). Using siRNA or expression vectors to knock-down or knock-in selective proteins, we further demonstrated that the ERα/IGF-1-R association is Src-dependent. Fulvestrant rapidly induced IGF-1-R and MAPK phosphorylation. The Src inhibitor PP2 and IGF-1-R inhibitor AG1024 greatly blocked fulvestrant-induced ERα/IGF-1-R interaction leading to a further depletion of total cellular ERα induced by fulvestrant and further enhanced fulvestrant-induced cell growth arrest. More dramatic was the translocation of ERα to the plasma membrane in combination with the IGF-1-R as shown by confocal microscopy. Taken in aggregate, these studies suggest that secondary resistance to hormonal therapy results in usage of both IGF-R and EGF-R for non-genomic signaling.
ISSN:0960-0760
1879-1220
DOI:10.1016/j.jsbmb.2009.09.018