Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers
Summary Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classi...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2010-01, Vol.237 (1), p.96-102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102 |
---|---|
container_issue | 1 |
container_start_page | 96 |
container_title | Journal of microscopy (Oxford) |
container_volume | 237 |
creator | KHUTLANG, R. KRISHNAN, S. WHITELAW, A. DOUGLAS, T. S. |
description | Summary
Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process. |
doi_str_mv | 10.1111/j.1365-2818.2009.03308.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825536</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733682775</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5048-6287db3f146a1a802cead1dd307aec99c4ecb747294d924efb10c3b7260acd443</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EotPCKyCvYJX02k5iZwFSVQEtKrCBDRvLcW5aj5J4iJ3-7HiEPmOfpE6njGCD8MK-ks_3ydYhhDLIWVqH65yJqsy4YirnAHUOQoDKr5-Q1e7iKVkBcJ5xyWGP7IewBgBVKnhO9lKmLGsuVmRzNEc_mIgtbTGijc6P1Hc0zg1Odu59cIG6kf5weNHf_br9gtgHHNMUonFjioXNHOeBhgHNFOgc3HhO45WnfsRE2d6EQB921zmcwgvyrDOp4uXjeUC-f3j_7fgkO_v68fT46CyzJRQqq7iSbSM6VlSGGQXcomlZ2wqQBm1d2wJtIwvJ66KteYFdw8CKRvIKjG2LQhyQd9vezdwM2Foc42R6vZncYKYb7Y3Tf9-M7kKf-0vNFS9LUaWCN48Fk_85Y4h6cMFi35sR_Ry0FKJSXMoyka__SXLGa1nBAqotaCcfwoTd7jkM9CJWr_XiTy_-9CJWP4jV1yn66s_v7IK_TSbg7Ra4cj3e_Hex_vT5dJnEPTOjuGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21297605</pqid></control><display><type>article</type><title>Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>KHUTLANG, R. ; KRISHNAN, S. ; WHITELAW, A. ; DOUGLAS, T. S.</creator><creatorcontrib>KHUTLANG, R. ; KRISHNAN, S. ; WHITELAW, A. ; DOUGLAS, T. S.</creatorcontrib><description>Summary
Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process.</description><identifier>ISSN: 0022-2720</identifier><identifier>EISSN: 1365-2818</identifier><identifier>DOI: 10.1111/j.1365-2818.2009.03308.x</identifier><identifier>PMID: 20055923</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Automated microscopy ; Automation, Laboratory ; Bacillus ; classifiers ; Color ; Humans ; Mass Screening ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - cytology ; Mycobacterium tuberculosis - isolation & purification ; Pattern Recognition, Automated ; segmentation ; Sensitivity and Specificity ; Sputum - microbiology ; Staining and Labeling ; tuberculosis ; Tuberculosis, Pulmonary - diagnosis ; Tuberculosis, Pulmonary - microbiology ; Ziehl–Neelsen</subject><ispartof>Journal of microscopy (Oxford), 2010-01, Vol.237 (1), p.96-102</ispartof><rights>2009 The Authors Journal compilation © 2009 The Royal Microscopical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5048-6287db3f146a1a802cead1dd307aec99c4ecb747294d924efb10c3b7260acd443</citedby><cites>FETCH-LOGICAL-c5048-6287db3f146a1a802cead1dd307aec99c4ecb747294d924efb10c3b7260acd443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2818.2009.03308.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2818.2009.03308.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20055923$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KHUTLANG, R.</creatorcontrib><creatorcontrib>KRISHNAN, S.</creatorcontrib><creatorcontrib>WHITELAW, A.</creatorcontrib><creatorcontrib>DOUGLAS, T. S.</creatorcontrib><title>Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers</title><title>Journal of microscopy (Oxford)</title><addtitle>J Microsc</addtitle><description>Summary
Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process.</description><subject>Algorithms</subject><subject>Automated microscopy</subject><subject>Automation, Laboratory</subject><subject>Bacillus</subject><subject>classifiers</subject><subject>Color</subject><subject>Humans</subject><subject>Mass Screening</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - cytology</subject><subject>Mycobacterium tuberculosis - isolation & purification</subject><subject>Pattern Recognition, Automated</subject><subject>segmentation</subject><subject>Sensitivity and Specificity</subject><subject>Sputum - microbiology</subject><subject>Staining and Labeling</subject><subject>tuberculosis</subject><subject>Tuberculosis, Pulmonary - diagnosis</subject><subject>Tuberculosis, Pulmonary - microbiology</subject><subject>Ziehl–Neelsen</subject><issn>0022-2720</issn><issn>1365-2818</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURi0EotPCKyCvYJX02k5iZwFSVQEtKrCBDRvLcW5aj5J4iJ3-7HiEPmOfpE6njGCD8MK-ks_3ydYhhDLIWVqH65yJqsy4YirnAHUOQoDKr5-Q1e7iKVkBcJ5xyWGP7IewBgBVKnhO9lKmLGsuVmRzNEc_mIgtbTGijc6P1Hc0zg1Odu59cIG6kf5weNHf_br9gtgHHNMUonFjioXNHOeBhgHNFOgc3HhO45WnfsRE2d6EQB921zmcwgvyrDOp4uXjeUC-f3j_7fgkO_v68fT46CyzJRQqq7iSbSM6VlSGGQXcomlZ2wqQBm1d2wJtIwvJ66KteYFdw8CKRvIKjG2LQhyQd9vezdwM2Foc42R6vZncYKYb7Y3Tf9-M7kKf-0vNFS9LUaWCN48Fk_85Y4h6cMFi35sR_Ry0FKJSXMoyka__SXLGa1nBAqotaCcfwoTd7jkM9CJWr_XiTy_-9CJWP4jV1yn66s_v7IK_TSbg7Ra4cj3e_Hex_vT5dJnEPTOjuGQ</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>KHUTLANG, R.</creator><creator>KRISHNAN, S.</creator><creator>WHITELAW, A.</creator><creator>DOUGLAS, T. S.</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201001</creationdate><title>Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers</title><author>KHUTLANG, R. ; KRISHNAN, S. ; WHITELAW, A. ; DOUGLAS, T. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5048-6287db3f146a1a802cead1dd307aec99c4ecb747294d924efb10c3b7260acd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Automated microscopy</topic><topic>Automation, Laboratory</topic><topic>Bacillus</topic><topic>classifiers</topic><topic>Color</topic><topic>Humans</topic><topic>Mass Screening</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - cytology</topic><topic>Mycobacterium tuberculosis - isolation & purification</topic><topic>Pattern Recognition, Automated</topic><topic>segmentation</topic><topic>Sensitivity and Specificity</topic><topic>Sputum - microbiology</topic><topic>Staining and Labeling</topic><topic>tuberculosis</topic><topic>Tuberculosis, Pulmonary - diagnosis</topic><topic>Tuberculosis, Pulmonary - microbiology</topic><topic>Ziehl–Neelsen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KHUTLANG, R.</creatorcontrib><creatorcontrib>KRISHNAN, S.</creatorcontrib><creatorcontrib>WHITELAW, A.</creatorcontrib><creatorcontrib>DOUGLAS, T. S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of microscopy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KHUTLANG, R.</au><au>KRISHNAN, S.</au><au>WHITELAW, A.</au><au>DOUGLAS, T. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers</atitle><jtitle>Journal of microscopy (Oxford)</jtitle><addtitle>J Microsc</addtitle><date>2010-01</date><risdate>2010</risdate><volume>237</volume><issue>1</issue><spage>96</spage><epage>102</epage><pages>96-102</pages><issn>0022-2720</issn><eissn>1365-2818</eissn><abstract>Summary
Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20055923</pmid><doi>10.1111/j.1365-2818.2009.03308.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2720 |
ispartof | Journal of microscopy (Oxford), 2010-01, Vol.237 (1), p.96-102 |
issn | 0022-2720 1365-2818 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2825536 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Automated microscopy Automation, Laboratory Bacillus classifiers Color Humans Mass Screening Mycobacterium tuberculosis Mycobacterium tuberculosis - cytology Mycobacterium tuberculosis - isolation & purification Pattern Recognition, Automated segmentation Sensitivity and Specificity Sputum - microbiology Staining and Labeling tuberculosis Tuberculosis, Pulmonary - diagnosis Tuberculosis, Pulmonary - microbiology Ziehl–Neelsen |
title | Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20detection%20of%20tuberculosis%20in%20Ziehl%E2%80%90Neelsen%E2%80%90stained%20sputum%20smears%20using%20two%20one%E2%80%90class%20classifiers&rft.jtitle=Journal%20of%20microscopy%20(Oxford)&rft.au=KHUTLANG,%20R.&rft.date=2010-01&rft.volume=237&rft.issue=1&rft.spage=96&rft.epage=102&rft.pages=96-102&rft.issn=0022-2720&rft.eissn=1365-2818&rft_id=info:doi/10.1111/j.1365-2818.2009.03308.x&rft_dat=%3Cproquest_pubme%3E733682775%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21297605&rft_id=info:pmid/20055923&rfr_iscdi=true |