Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers

Summary Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2010-01, Vol.237 (1), p.96-102
Hauptverfasser: KHUTLANG, R., KRISHNAN, S., WHITELAW, A., DOUGLAS, T. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process.
ISSN:0022-2720
1365-2818
DOI:10.1111/j.1365-2818.2009.03308.x