Automated detection of tuberculosis in Ziehl‐Neelsen‐stained sputum smears using two one‐class classifiers
Summary Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classi...
Gespeichert in:
Veröffentlicht in: | Journal of microscopy (Oxford) 2010-01, Vol.237 (1), p.96-102 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
Screening for tuberculosis in high‐prevalence countries relies on sputum smear microscopy. We present a method for the automated identification of Mycobacterium tuberculosis in images of Ziehl‐Neelsen‐stained sputum smears obtained using a bright‐field microscope. We use two stages of classification. The first comprises a one‐class pixel classifier for object segmentation. Geometric transformation invariant features are extracted for implementation of the second stage, namely one‐class object classification. Different classifiers are compared; the sensitivity of all tested classifiers is above 90% for the identification of a single bacillus object using all extracted features. The mixture of Gaussians classifier performed well in both stages of classification. This method may be used as a step in the automation of tuberculosis screening, in order to reduce technician involvement in the process. |
---|---|
ISSN: | 0022-2720 1365-2818 |
DOI: | 10.1111/j.1365-2818.2009.03308.x |