Controlled embryoid body formation via surface modification and avidin-biotin cross-linking

Cell-cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have prev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytotechnology (Dordrecht) 2009-12, Vol.61 (3), p.135-144
Hauptverfasser: Gothard, David, Roberts, Scott J, Shakesheff, Kevin M, Buttery, Lee D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cell-cell interaction is an integral part of embryoid body (EB) formation controlling 3D aggregation. Manipulation of embryonic stem (ES) cell interactions could provide control over EB formation. Studies have shown a direct relationship between EB formation and ES cell differentiation. We have previously described a cell surface modification and cross-linking method for influencing cell-cell interaction and formation of multicellular constructs. Here we show further characterisation of this engineered aggregation. We demonstrate that engineering accelerates ES cell aggregation, forming larger, denser and more stable EBs than control samples, with no significant decrease in constituent ES cell viability. However, extended culture ≥5 days reveals significant core necrosis creating a layered EB structure. Accelerated aggregation through engineering circumvents this problem as EB formation time is reduced. We conclude that the proposed engineering method influences initial ES cell-ES cell interactions and EB formation. This methodology could be employed to further our understanding of intrinsic EB properties and their effect on ES cell differentiation.
ISSN:0920-9069
1573-0778
DOI:10.1007/s10616-010-9255-3