A Bayesian network model for analysis of detection performance in surveillance systems

Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AMIA ... Annual Symposium proceedings 2009-11, Vol.2009, p.276-280
Hauptverfasser: Izadi, Masoumeh, Buckeridge, David, Okhmatovskaia, Anna, Tu, Samson W, O'Connor, Martin J, Nyulas, Csongor, Musen, Mark A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Worldwide developments concerning infectious diseases and bioterrorism are driving forces for improving aberrancy detection in public health surveillance. The performance of an aberrancy detection algorithm can be measured in terms of sensitivity, specificity and timeliness. However, these metrics are probabilistically dependent variables and there is always a trade-off between them. This situation raises the question of how to quantify this tradeoff. The answer to this question depends on the characteristics of the specific disease under surveillance, the characteristics of data used for surveillance, and the algorithmic properties of detection methods. In practice, the evidence describing the relative performance of different algorithms remains fragmented and mainly qualitative. In this paper, we consider the development and evaluation of a Bayesian network framework for analysis of performance measures of aberrancy detection algorithms. This framework enables principled comparison of algorithms and identification of suitable algorithms for use in specific public health surveillance settings.
ISSN:1559-4076