Sigma-1 Receptors Regulate Bcl-2 Expression by Reactive Oxygen Species-Dependent Transcriptional Regulation of Nuclear Factor κB

The expression of Bcl-2, the major antiapoptotic member of the Bcl-2 family, is under complex controls of several factors, including reactive oxygen species (ROS). The σ-1 receptor (Sig-1R), which was recently identified as a novel molecular chaperone at the mitochondria-associated endoplasmic retic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pharmacology and experimental therapeutics 2010-02, Vol.332 (2), p.388-397
Hauptverfasser: Meunier, Johann, Hayashi, Teruo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The expression of Bcl-2, the major antiapoptotic member of the Bcl-2 family, is under complex controls of several factors, including reactive oxygen species (ROS). The σ-1 receptor (Sig-1R), which was recently identified as a novel molecular chaperone at the mitochondria-associated endoplasmic reticulum membrane (MAM), has been shown to exert robust cellular protective actions. However, mechanisms underlying the antiapoptotic action of the Sig-1R remain to be clarified. Here, we found that the Sig-1R promotes cellular survival by regulating the Bcl-2 expression in Chinese hamster ovary cells. Although both Sig-1Rs and Bcl-2 are highly enriched at the MAM, Sig-1Rs neither associate physically with Bcl-2 nor regulate stability of Bcl-2 proteins. However, Sig-1Rs tonically regulate the expression of Bcl-2 proteins. Knockdown of Sig-1Rs down-regulates whereas overexpression of Sig-1Rs up-regulates bcl-2 mRNA, indicating that the Sig-1R transcriptionally regulates the expression of Bcl-2. The effect of Sig-1R small interfering RNA down-regulating Bcl-2 was blocked by ROS scavengers and by the inhibitor of the ROS-inducible transcription factor nuclear factor κB (NF-κB). Knockdown of Sig-1Rs up-regulates p105, the precursor of NF-κB, while concomitantly decreasing inhibitor of nuclear factor-κBα. Sig-1R knockdown also accelerates the conversion of p105 to the active form p50. Lastly, we showed that knockdown of Sig-1Rs potentiates H 2 O 2 -induced apoptosis; the action is blocked by either the NF-κB inhibitor oridonin or overexpression of Bcl-2. Thus, these findings suggest that Sig-1Rs promote cell survival, at least in part, by transcriptionally regulating Bcl-2 expression via the ROS/NF-κB pathway.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.109.160960