Chlamydomonas reinhardtii BBSome is an IFT cargo required for export of specific signaling proteins from flagella

In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2009-12, Vol.187 (7), p.1117-1132
Hauptverfasser: Lechtreck, Karl-Ferdinand, Johnson, Eric C, Sakai, Tsuyoshi, Cochran, Deborah, Ballif, Bryan A, Rush, John, Pazour, Gregory J, Ikebe, Mitsuo, Witman, George B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In humans, seven evolutionarily conserved genes that cause the cilia-related disorder Bardet-Biedl syndrome (BBS) encode proteins that form a complex termed the BBSome. The function of the BBSome in the cilium is not well understood. We purified a BBSome-like complex from Chlamydomonas reinhardtii flagella and found that it contains at least BBS1, -4, -5, -7, and -8 and undergoes intraflagellar transport (IFT) in association with a subset of IFT particles. C. reinhardtii insertional mutants defective in BBS1, -4, and -7 assemble motile, full-length flagella but lack the ability to phototax. In the bbs4 mutant, the assembly and transport of IFT particles are unaffected, but the flagella abnormally accumulate several signaling proteins that may disrupt phototaxis. We conclude that the BBSome is carried by IFT but is an adapter rather than an integral component of the IFT machinery. C. reinhardtii BBS4 may be required for the export of signaling proteins from the flagellum via IFT.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200909183