RNase PH: An Escherichia coli Phosphate-Dependent Nuclease Distinct from Polynucleotide Phosphorylase

Final trimming of the 3′ terminus of tRNA precursors in Escherichia coli is thought to proceed by an exonucleolytic mechanism. However, mutant strains lacking as many as four exoribonucleases known to act on tRNA still grow normally and process tRNA normally. Extracts from such a multiple-RNase-defi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1988-07, Vol.85 (13), p.4710-4714
Hauptverfasser: Deutscher, Murray P., Marshall, G. Thomas, Cudny, Henryk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Final trimming of the 3′ terminus of tRNA precursors in Escherichia coli is thought to proceed by an exonucleolytic mechanism. However, mutant strains lacking as many as four exoribonucleases known to act on tRNA still grow normally and process tRNA normally. Extracts from such a multiple-RNase-deficient strain accurately mature tRNA precursors exonucleolytically in vitro in a reaction that requires inorganic phosphate. Here we show that this reaction is not due to polynucleotide phosphorylase (PNPase) but, rather, that it is mediated by a phosphate-requiring exonuclease that we have named RNase PH. Purified PNPase is incapable of completely processing tRNA precursors, and extracts from a PNPase- strain retain full activity for phosphorolytic processing. Although both PNPase and RNase PH act in a phosphorolytic manner, they differ substantially in size and substrate specificity. RNase PH has a molecular mass of 45-50 kDa and favors tRNA precursors as substrates. The possible physiological role of RNase PH and the advantages of phosphorolytic processing are discussed.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.85.13.4710