Synchronously Amplified Fluorescence Image Recovery (SAFIRe)

Fluorescence intermittency severely limits brightness in both single molecule and bulk fluorescence. Herein, we demonstrate that optical depopulation of organic fluorophore triplet states opens a path to significantly increased sensitivity by simultaneously increasing brightness and greatly reducing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2010-01, Vol.114 (1), p.660-665
Hauptverfasser: Richards, Chris I, Hsiang, Jung-Cheng, Dickson, Robert M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescence intermittency severely limits brightness in both single molecule and bulk fluorescence. Herein, we demonstrate that optical depopulation of organic fluorophore triplet states opens a path to significantly increased sensitivity by simultaneously increasing brightness and greatly reducing background through synchronously detected fluorescence modulation. Image recovery is achieved through selective fluorescence enhancement via modulating a secondary laser excitation at much lower energy than the observed emission in order to depopulate the long-lived triplet states. A series of xanthene dyes that exhibit efficient triplet-state formation demonstrate that this method of selective signal extraction can be achieved at moderate primary and secondary excitation intensities through tailoring dye photophysics and imaging conditions. Up to 5-fold increases in solution-based fluorescence over primary laser excitation alone was achieved upon secondary laser excitation, and dynamic control of signal modulation was demonstrated over a wide time range simply by varying the modulation frequency of the laser used for depopulation of the triplet state. We identify the photophysical characteristics that enable existing or to-be-designed fluorophores to be used in synchronously amplified fluorescence image recovery (SAFIRe) microscopy.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp909167j