The Stability of Aryl Carbanions Derived from Pyridine N-Oxide: The Role of Resonance in Stabilizing Aryl Anions
The gas phase stability of carbanions centered at various positions on pyridine N-oxide were investigated by computational and experimental methods. In addition, G3MP2 computations were completed on ring-deprotonated pyridine and N-methylpyridinium. With these species, the effect of a nitrogen-cente...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2010-01, Vol.132 (1), p.390-395 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The gas phase stability of carbanions centered at various positions on pyridine N-oxide were investigated by computational and experimental methods. In addition, G3MP2 computations were completed on ring-deprotonated pyridine and N-methylpyridinium. With these species, the effect of a nitrogen-centered positive charge on carbanion stability was assessed. Introduction of the nitrogen-oxide group into the benzene ring decreases the ΔH acid by ∼20 kcal/mol, but surprisingly, the effect is nearly independent of the position of the group (ortho, meta, or para). The results indicate that the N-oxide offers a balance of field, resonance, and local effects that cancels out any positional preferences. G3MP2 calculations indicate that a similar lack of positional selectivity is seen in nitrobenzene and benzonitrile. Overall, the data suggest that π-effects are limited in phenyl anions, and as a result, ylide-like, rather than carbene-like, resonance structures are most important in the anions derived from ring deprotonation of arenes and heterocycles of these general types. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja906473v |