Heme Transfer to the Bacterial Cell Envelope Occurs via a Secreted Hemophore in the Gram-positive Pathogen Bacillus anthracis

To initiate and sustain an infection in mammals, bacterial pathogens must acquire host iron. However, the host's compartmentalization of large amounts of iron in heme, which is bound primarily by hemoglobin in red blood cells, acts as a barrier to bacterial iron assimilation. Bacillus anthracis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-11, Vol.284 (46), p.32138-32146
Hauptverfasser: Fabian, Marian, Solomaha, Elena, Olson, John S., Maresso, Anthony W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To initiate and sustain an infection in mammals, bacterial pathogens must acquire host iron. However, the host's compartmentalization of large amounts of iron in heme, which is bound primarily by hemoglobin in red blood cells, acts as a barrier to bacterial iron assimilation. Bacillus anthracis, the causative agent of the disease anthrax, secretes two NEAT (near iron transporter) proteins, IsdX1 and IsdX2, which scavenge heme from host hemoglobin and promote growth under low iron conditions. The mechanism of heme transfer from these hemophores to the bacterial cell is not known. We present evidence that the heme-bound form of IsdX1 rapidly and directionally transfers heme to IsdC, a NEAT protein covalently attached to the cell wall, as well as to IsdX2. In both cases, the transfer of heme is mediated by a physical association between the donor and recipient. Unlike Staphylococcus aureus, whose NEAT proteins acquire heme from hemoglobin directly at the bacterial surface, B. anthracis secretes IsdX1 to capture heme in the extracellular milieu and relies on NEAT-NEAT interactions to deliver the bound heme to the envelope via IsdC. Understanding the mechanism of NEAT-mediated iron transport into pathogenic Gram-positive bacteria may provide an avenue for the development of therapeutics to combat infection.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.040915