Using Functional Tissue Engineering and Bioreactors to Mechanically Stimulate Tissue-Engineered Constructs

Bioreactors precondition tissue-engineered constructs (TECs) to improve integrity and hopefully repair. In this paper, we use functional tissue engineering to suggest criteria for preconditioning TECs. Bioreactors should (1) control environment during mechanical stimulation; (2) stimulate multiple c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part A 2009-04, Vol.15 (4), p.741-749
Hauptverfasser: Butler, David L., Hunter, Shawn A., Chokalingam, Kumar, Cordray, Michael J., Shearn, Jason, Juncosa-Melvin, Natalia, Nirmalanandhan, Sanjit, Jain, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bioreactors precondition tissue-engineered constructs (TECs) to improve integrity and hopefully repair. In this paper, we use functional tissue engineering to suggest criteria for preconditioning TECs. Bioreactors should (1) control environment during mechanical stimulation; (2) stimulate multiple constructs with identical or individual waveforms; (3) deliver precise displacements, including those that mimic in vivo activities of daily living (ADLs); and (4) adjust displacement patterns based on reaction loads and biological activity. We apply these criteria to three bioreactors. We have placed a pneumatic stimulator in a conventional incubator and stretched four constructs in each of five silicone dishes. We have also programmed displacement-limited stimuli that replicate frequencies and peak in vivo patellar tendon (PT) strains. Cellular activity can be monitored from spent media. However, our design prevents direct TEC force measurement. We have improved TEC stiffness as well as PT repair stiffness and shown correlations between the two. We have also designed an incubator to fit within each of two electromagnetic stimulators. Each incubator provides cell viability like a commercial incubator. Multiple constructs are stimulated with precise displacements that can mimic ADL strain patterns and record individual forces. Future bioreactors could be further improved by controlling and measuring TEC displacements and forces to create more functional tissues for surgeons and their patients.
ISSN:1937-3341
1937-335X
DOI:10.1089/ten.tea.2008.0292