Protein extraction and 2-DE of water- and lipid-soluble proteins from bovine pericardium, a low-cellularity tissue

Bovine pericardium (BP) is an important biomaterial used in the production of glutaraldehyde-fixed heart valves and tissue-engineering applications. The ability to perform proteomic analysis on BP is useful for a range of studies, including investigation of immune rejection after implantation. Howev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2008-11, Vol.29 (22), p.4508-4515
Hauptverfasser: Griffiths, Leigh G, Choe, Leila, Lee, Kelvin H, Reardon, Kenneth F, Orton, E. Christopher
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bovine pericardium (BP) is an important biomaterial used in the production of glutaraldehyde-fixed heart valves and tissue-engineering applications. The ability to perform proteomic analysis on BP is useful for a range of studies, including investigation of immune rejection after implantation. However, proteomic analysis of fibrous tissues such as BP is challenging due to their relative low-cellularity and abundance of extracellular matrix. A variety of methods for tissue treatment, protein extraction, and ;fractionation were investigated with the aim of producing high-quality 2-DE gels for both water- and lipid-soluble BP proteins. Extraction of water-soluble proteins with 3-(benzyldimethylammonio)-propanesulfonate followed by n-dodecyl β-D-maltoside extraction and ethanol precipitation for lipid-soluble proteins provided the best combination of yield, spot number, and resolution on 2-DE gels (Protocol E2). ESI-quadrupole/ion trap or MALDI-TOF/TOF MS protein identifications were performed to confirm bovine origin and appropriate subcellular prefractionation of resolved proteins. Twenty-five unique, predominantly cytoplasmic bovine proteins were identified from the water-soluble fraction. Thirty-two unique, predominantly membrane bovine proteins were identified from the lipid-soluble fraction. These results demonstrated that the final protocol produced high-quality proteomic data from this important tissue for both cytoplasmic and membrane proteins.
ISSN:0173-0835
1522-2683
DOI:10.1002/elps.200800108