Presenilin-1 acts via Id1 to regulate the function of muscle satellite cells in a γ-secretase-independent manner

Muscle satellite cells are the resident stem cells of adult skeletal muscle. Here, we have examined the role of the multifunctional protein presenilin-1 (PS1) in satellite cell function. PS1 acts as a crucial component of the γ-secretase complex, which is required to cleave single-pass transmembrane...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2009-12, Vol.122 (24), p.4427-4438
Hauptverfasser: Ono, Yusuke, Gnocchi, Viola F, Zammit, Peter S, Nagatomi, Ryoichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Muscle satellite cells are the resident stem cells of adult skeletal muscle. Here, we have examined the role of the multifunctional protein presenilin-1 (PS1) in satellite cell function. PS1 acts as a crucial component of the γ-secretase complex, which is required to cleave single-pass transmembrane proteins such as Notch and amyloid-β precursor protein. PS1, however, also functions through γ-secretase-independent pathways. Activation of satellite cells was accompanied by induction of PS1, with PS1 knockdown enhancing their myogenic differentiation, but reducing their self-renewal. Transfection with siRNA against PS1 led to accelerated myogenic differentiation during muscle regeneration in vivo. Conversely, constitutive expression of PS1 resulted in the suppression of myogenic differentiation and promotion of the self-renewal phenotype. Importantly, we found that PS1 also acts independently of its role in γ-secretase activity in controlling myogenesis, which is mediated in part by Id1 (inhibitor of DNA binding 1), a negative regulator of the myogenic regulatory factor MyoD. PS1 can control Id1, which affects satellite cell fate by regulating the transcriptional activity of MyoD. Taken together, our observations show that PS1 is a key player in the choice of satellite cell fate, acting through both γ-secretase-dependent and γ-secretase-independent mechanisms.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.049742