Coronavirus N Protein N-Terminal Domain (NTD) Specifically Binds the Transcriptional Regulatory Sequence (TRS) and Melts TRS-cTRS RNA Duplexes

All coronaviruses (CoVs), including the causative agent of severe acute respiratory syndrome (SARS), encode a nucleocapsid (N) protein that harbors two independent RNA binding domains of known structure, but poorly characterized RNA binding properties. We show here that the N-terminal domain (NTD) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2009-12, Vol.394 (3), p.544-557
Hauptverfasser: Grossoehme, Nicholas E., Li, Lichun, Keane, Sarah C., Liu, Pinghua, Dann, Charles E., Leibowitz, Julian L., Giedroc, David P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All coronaviruses (CoVs), including the causative agent of severe acute respiratory syndrome (SARS), encode a nucleocapsid (N) protein that harbors two independent RNA binding domains of known structure, but poorly characterized RNA binding properties. We show here that the N-terminal domain (NTD) of N protein from mouse hepatitis virus (MHV), a virus most closely related to SARS-CoV, employs aromatic amino acid-nucleobase stacking interactions with a triple adenosine motif to mediate high-affinity binding to single-stranded RNAs containing the transcriptional regulatory sequence (TRS) or its complement (cTRS). Stoichiometric NTD fully unwinds a TRS-cTRS duplex that mimics a transiently formed transcription intermediate in viral subgenomic RNA synthesis. Mutation of the solvent-exposed Y127, positioned on the β-platform surface of our 1.75 Å structure, binds the TRS far less tightly and is severely crippled in its RNA unwinding activity. In contrast, the C-terminal domain (CTD) exhibits no RNA unwinding activity. Viruses harboring Y127A N mutation are strongly selected against and Y127A N does not support an accessory function in MHV replication. We propose that the helix melting activity of the coronavirus N protein NTD plays a critical accessory role in subgenomic RNA synthesis and other processes requiring RNA remodeling.
ISSN:0022-2836
1089-8638
DOI:10.1016/j.jmb.2009.09.040