ECRG2 Regulates Cell Migration/Invasion through Urokinase-type Plasmin Activator Receptor (uPAR)/β1 Integrin Pathway

ECRG2 is a novel gene that shows sequence similarity to KAZAL-type serine protease inhibitor. We have previously demonstrated that ECRG2 inhibits migration/invasion of lung cancer PG cells. However, the mechanism by which ECRG2 performs these activities is a compelling question. Urokinase-type plasm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-11, Vol.284 (45), p.30897-30906
Hauptverfasser: Cheng, Xiaolong, Shen, Zheng, Yin, Litian, Lu, Shih-Hsin, Cui, Yongping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ECRG2 is a novel gene that shows sequence similarity to KAZAL-type serine protease inhibitor. We have previously demonstrated that ECRG2 inhibits migration/invasion of lung cancer PG cells. However, the mechanism by which ECRG2 performs these activities is a compelling question. Urokinase-type plasmin activator (uPA) binding to uPAR induces migration/invasion through multiple interactors including integrins. In this study, we found that ECRG2 binds specifically to the kringle domain of uPA. Moreover, we demonstrated that ECRG2 forms a complex with uPA·uPAR, that such a complex modifies the dynamical association of uPAR with β1 integrins, and that disruption inhibits Src/MAP (mitogen-activated protein) kinase pathway, resulting in suppression of cell migration/invasion in an in vitro Matrigel migration/invasion assay. Conversely, depletion of ECRG2 markedly enhanced the association of uPAR with β1 integrins, elevated basal Src/MAP kinase activation, and stimulated HT1080, MDA-MB-231, and MCF-7 cell migration/invasion. Together, our results provide evidence that ECRG2 is involved in the regulation of migration/invasion through uPA/uPAR/β1 integrins/Src/MAP kinase pathway and may represent a novel therapeutic target for cancer.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.011213