The novel distribution of phosphodiesterase-4 subtypes within the rat retina

Abstract Phosphodiesterases (PDEs) are important regulators of signal transduction processes. While much is known about the function of cyclic GMP-specific PDEs in the retina, much less is known about the closely related, cyclic AMP-specific PDEs. The purpose of the present study is to characterize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-11, Vol.163 (4), p.1277-1291
Hauptverfasser: Whitaker, C.M, Cooper, N.G.F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Phosphodiesterases (PDEs) are important regulators of signal transduction processes. While much is known about the function of cyclic GMP-specific PDEs in the retina, much less is known about the closely related, cyclic AMP-specific PDEs. The purpose of the present study is to characterize and localize PDE4 within the adult rat retina. We have used Western blotting, RT-PCR, and immunohistochemistry together with retrograde labeling to determine the presence and location of each PDE4 subtype. Western blot analysis revealed that multiple isoforms of PDE4A, B, and D subtypes are present within the retina, whereas the PDE4C subtype was absent. These data were confirmed by RT-PCR. Using immunohistochemistry we show that all three PDE4s are abundantly expressed within the retina where they all colocalize with retrograde-labeled retinal ganglion cells, as well as bipolar cells, horizontal cells, and cholinergic amacrine cells, whereas Müller cells lack PDE4 expression. Uniquely, PDE4B was expressed by the inner and outer segments of rod photoreceptors as well as their terminals within the outer plexiform layer. Collectively, our results demonstrate that PDE4s are abundantly expressed throughout the rodent retina and this study provides the framework for further functional studies.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.07.045