Characterization of drug-protein interactions in blood using high-performance affinity chromatography

The binding of drugs with proteins in blood, serum, or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of separation science 2009-03, Vol.32 (5-6), p.835-853
Hauptverfasser: Hage, David S, Jackson, Abby, Sobansky, Matthew R, Schiel, John E, Yoo, Michelle J, Joseph, K.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The binding of drugs with proteins in blood, serum, or plasma is an important process in determining the activity, distribution, rate of excretion, and toxicity of drugs in the body. High-performance affinity chromatography (HPAC) has received a great deal of interest as a means for studying these interactions. This review examines the various techniques that have been used in HPAC to examine drug-protein binding and discusses the types of information that can be obtained through this approach. A comparison of these techniques with traditional methods for binding studies (e.g., equilibrium dialysis and ultrafiltration) will also be presented. The use of HPAC with specific serum proteins and binding agents will then be discussed, including HSA and α₁-acid glycoprotein (AGP). Several examples from the literature are provided to illustrate the applications of such research. Recent developments in this field are also described, such as the use of improved immobilization techniques, new data analysis methods, techniques for working directly with complex biological samples, and work with immobilized lipoproteins. The relative advantages and limitations of the methods that are described will be considered and the possible use of these techniques in the high-throughput screening or characterization of drug-protein binding will be discussed.
ISSN:1615-9306
1615-9314
DOI:10.1002/jssc.200800640