Microarray analysis of prothrombin knockdown in zebrafish

The serine protease thrombin is generated from its precursor, prothrombin, in the coagulation cascade and plays a central role in fibrin deposition and platelet activation mediated through the protease activated receptors. Knockdown of prothrombin in the zebrafish was previously shown to recapitulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Blood cells, molecules, & diseases molecules, & diseases, 2009-09, Vol.43 (2), p.202-210
Hauptverfasser: Day, Kenneth R., Jagadeeswaran, Pudur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The serine protease thrombin is generated from its precursor, prothrombin, in the coagulation cascade and plays a central role in fibrin deposition and platelet activation mediated through the protease activated receptors. Knockdown of prothrombin in the zebrafish was previously shown to recapitulate the phenotype observed in prothrombin knockout mice, such as an absence of blood pericardial edema, and hemorrhage. However, the role of thrombin during embryogenesis is not fully understood. To find genes affected by potential thrombin signaling in embryogenesis before blood circulation, microarray analysis was performed using total RNA prepared from antisense-injected, knockdown embryos versus mismatch-injected at 20 h post fertilization. A total of 63 upregulated and downregulated genes were identified with duplicate microarrays using dye reversal and a two-fold difference limitation. Real time RT-PCR for 10 selected genes identified by the microarray confirmed the expression changes in these genes. One particular gene, phlda3, was at least eleven fold upregulated, and in situ hybridization revealed expansion of phlda3 expression in the central nervous system, branchial arches, and head endoderm in knockdown embryos. The identification of these genes regulated by thrombin according to microarray analysis should provide a greater understanding of the effects of thrombin activity in the early vertebrate embryo.
ISSN:1079-9796
1096-0961
DOI:10.1016/j.bcmd.2009.04.001