Molecular mechanisms that enhance synapse stability despite persistent disruption of the spectrin/ankyrin/microtubule cytoskeleton

Loss of spectrin or ankyrin in the presynaptic motoneuron disrupts the synaptic microtubule cytoskeleton and leads to disassembly of the neuromuscular junction (NMJ). Here, we demonstrate that NMJ disassembly after loss of α-spectrin can be suppressed by expression of a WldS transgene, providing evi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2009-10, Vol.187 (1), p.101-117
Hauptverfasser: Massaro, Catherine M, Pielage, Jan, Davis, Graeme W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Loss of spectrin or ankyrin in the presynaptic motoneuron disrupts the synaptic microtubule cytoskeleton and leads to disassembly of the neuromuscular junction (NMJ). Here, we demonstrate that NMJ disassembly after loss of α-spectrin can be suppressed by expression of a WldS transgene, providing evidence for a Wallerian-type degenerative mechanism. We then identify a second signaling system. Enhanced MAPK-JNK-Fos signaling suppresses NMJ disassembly despite loss of presynaptic α-spectrin or ankyrin2-L. This signaling system is activated after an acute cytoskeletal disruption, suggesting an endogenous role during neurological stress. This signaling system also includes delayed, negative feedback via the JNK phosphatase puckered, which inhibits JNK-Fos to allow NMJ disassembly in the presence of persistent cytoskeletal stress. Finally, the MAPK-JNK pathway is not required for baseline NMJ stabilization during normal NMJ growth. We present a model in which signaling via JNK-Fos functions as a stress response system that is transiently activated after cytoskeletal disruption to enhance NMJ stability, and is then shut off allowing NMJ disassembly during persistent cytoskeletal disruption.
ISSN:0021-9525
1540-8140
DOI:10.1083/jcb.200903166