The role of rat dorsomedial prefrontal cortex in spatial working memory

Abstract We used an operant delayed spatial alternation task to examine the role of rat dorsomedial prefrontal cortex (dmPFC) in spatial working memory. The task was designed to restrict movements during the delay period to minimize use of motor-mediating strategies. Inactivation of dmPFC (muscimol)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience 2009-12, Vol.164 (2), p.444-456
Hauptverfasser: Horst, N.K, Laubach, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We used an operant delayed spatial alternation task to examine the role of rat dorsomedial prefrontal cortex (dmPFC) in spatial working memory. The task was designed to restrict movements during the delay period to minimize use of motor-mediating strategies. Inactivation of dmPFC (muscimol) resulted in increased errors and increased the temporal variability of responding. Animals did not show perseveration after errors (i.e., responding again at the erroneous location). Under control conditions, the time between spatial responses was greater and more variable before errors as compared to correct responses. These effects were eliminated when muscimol was infused into dmPFC. Trial outcome also affected movement and delay times in the next trial. This effect was diminished with muscimol in dmPFC. By contrast, when muscimol was infused in dorsal agranular insular cortex (AId)—a region that is strongly interconnected with dorsomedial prefrontal regions—there was no effect on delayed spatial alternation performance. These experiments confirm that dmPFC is necessary for successful delayed spatial alternation and establish that there is a relationship between response time variability and trial outcome that depends on dorsomedial prefrontal function.
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2009.08.004