Role of peroxisome proliferator-activated receptor-α in fasting-mediated oxidative stress

The peroxisome proliferator-activated receptor-α (PPARα) regulates lipid homeostasis, particularly in the liver. This study was aimed at elucidating the relationship between hepatosteatosis and oxidative stress during fasting. Fasted Ppara-null mice exhibited marked hepatosteatosis, which was associ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2009-09, Vol.47 (6), p.767-778
Hauptverfasser: Abdelmegeed, Mohamed A., Moon, Kwan-Hoon, Hardwick, James P., Gonzalez, Frank J., Song, Byoung-Joon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The peroxisome proliferator-activated receptor-α (PPARα) regulates lipid homeostasis, particularly in the liver. This study was aimed at elucidating the relationship between hepatosteatosis and oxidative stress during fasting. Fasted Ppara-null mice exhibited marked hepatosteatosis, which was associated with elevated levels of lipid peroxidation, nitric oxide synthase activity, and hydrogen peroxide accumulation. Total glutathione (GSH), mitochondrial GSH, and the activities of major antioxidant enzymes were also lower in the fasted Ppara-null mice. Consequently, the number and extent of nitrated proteins were markedly increased in the fasted Ppara-null mice, although high levels of protein nitration were still detected in the fed Ppara-null mice while many oxidatively modified proteins were only found in the fasted Ppara-null mice. However, the role of inflammation in increased oxidative stress in the fasted Ppara-null mice was minimal based on the similar levels of tumor necrosis factor-α change in all groups. These results with increased oxidative stress observed in the fasted Ppara-null mice compared with other groups demonstrate a role for PPARα in fasting-mediated oxidative stress and that inhibition of PPARα functions may increase the susceptibility to oxidative damage in the presence of another toxic agent.
ISSN:0891-5849
1873-4596
DOI:10.1016/j.freeradbiomed.2009.06.017