Porphyrins Promote the Association of GENOMES UNCOUPLED 4 and a Mg-chelatase Subunit with Chloroplast Membranes

In plants, chlorophylls and other tetrapyrroles are synthesized from a branched pathway that is located within chloroplasts. GUN4 (GENOMES UNCOUPLED 4) stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits porphyrins to the chlorophyll branch. GUN4 stimulates Mg-che...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-09, Vol.284 (37), p.24783-24796
Hauptverfasser: Adhikari, Neil D., Orler, Robert, Chory, Joanne, Froehlich, John E., Larkin, Robert M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In plants, chlorophylls and other tetrapyrroles are synthesized from a branched pathway that is located within chloroplasts. GUN4 (GENOMES UNCOUPLED 4) stimulates chlorophyll biosynthesis by activating Mg-chelatase, the enzyme that commits porphyrins to the chlorophyll branch. GUN4 stimulates Mg-chelatase by a mechanism that involves binding the ChlH subunit of Mg-chelatase, as well as a substrate (protoporphyrin IX) and product (Mg-protoporphyrin IX) of Mg-chelatase. We chose to test whether GUN4 might also affect interactions between Mg-chelatase and chloroplast membranes, the site of chlorophyll biosynthesis. To test this idea, we induced chlorophyll precursor levels in purified pea chloroplasts by feeding these chloroplasts with 5-aminolevulinic acid, determined the relative levels of GUN4 and Mg-chelatase subunits in soluble and membrane-containing fractions derived from these chloroplasts, and quantitated Mg-chelatase activity in membranes isolated from these chloroplasts. We also monitored GUN4 levels in the soluble and membrane-containing fractions derived from chloroplasts fed with various porphyrins. Our results indicate that 5-aminolevulinic acid feeding stimulates Mg-chelatase activity in chloroplast membranes and that the porphyrin-bound forms of GUN4 and possibly ChlH associate most stably with chloroplast membranes. These findings are consistent with GUN4 stimulating chlorophyll biosynthesis not only by activating Mg-chelatase but also by promoting interactions between ChlH and chloroplast membranes.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.025205