Cell cycle roles for two 14-3-3 proteins during Drosophila development

Drosophila 14-3-3 epsilon and 14-3-3 zeta proteins have been shown to function in RAS/MAP kinase pathways that influence the differentiation of the adult eye and the embryo. Because 14-3-3 proteins have a conserved involvement in cell cycle checkpoints in other systems, we asked (1) whether Drosophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cell science 2001-10, Vol.114 (Pt 19), p.3445-3454
Hauptverfasser: Su, T T, Parry, D H, Donahoe, B, Chien, C T, O'Farrell, P H, Purdy, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drosophila 14-3-3 epsilon and 14-3-3 zeta proteins have been shown to function in RAS/MAP kinase pathways that influence the differentiation of the adult eye and the embryo. Because 14-3-3 proteins have a conserved involvement in cell cycle checkpoints in other systems, we asked (1) whether Drosophila 14-3-3 proteins also function in cell cycle regulation, and (2) whether cell proliferation during Drosophila development has different requirements for the two 14-3-3 proteins. We find that antibody staining for 14-3-3 family members is cytoplasmic in interphase and perichromosomal in mitosis. Using mutants of cyclins, Cdk1 and Cdc25(string) to manipulate Cdk1 activity, we found that the localization of 14-3-3 proteins is coupled to Cdk1 activity and cell cycle stage. Relocalization of 14-3-3 proteins with cell cycle progression suggested cell-cycle-specific roles. This notion is confirmed by the phenotypes of 14-3-3 epsilon and 14-3-3 zeta mutants: 14-3-3 epsilon is required to time mitosis in undisturbed post-blastoderm cell cycles and to delay mitosis following irradiation; 14-3-3 zeta is required for normal chromosome separation during syncytial mitoses. We suggest a model in which 14-3-3 proteins act in the undisturbed cell cycle to set a threshold for entry into mitosis by suppressing Cdk1 activity, to block mitosis following radiation damage and to facilitate proper exit from mitosis.
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.114.19.3445