Consistent Recovery of Sensory Stimuli Encoded with MIMO Neural Circuits
We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same spike train as the original stimulus. The recov...
Gespeichert in:
Veröffentlicht in: | Computational Intelligence and Neuroscience 2010, Vol.2010 (2010), p.176-188 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same spike train as the original stimulus. The recovered stimulus has to also minimize a quadratic smoothness optimality criterion. We formulate the reconstruction as a spline interpolation problem for scalar as well as vector valued stimuli and show that the recovery has a unique solution. We provide explicit reconstruction algorithms for stimuli encoded with single as well as a population of integrate-and-fire neurons. We demonstrate how our reconstruction algorithms can be applied to stimuli encoded with ON-OFF neural circuits with feedback. Finally, we extend the formalism to multi-input multi-output neural circuits and demonstrate that vector-valued finite energy signals can be efficiently encoded by a neural population provided that its size is beyond a threshold value. Examples are given that demonstrate the potential applications of our methodology to systems neuroscience and neuromorphic engineering. |
---|---|
ISSN: | 1687-5265 1687-5273 |
DOI: | 10.1155/2010/469658 |