prefrontal cortex and the executive control of attention
We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixat...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2009-01, Vol.192 (3), p.489-497 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 497 |
---|---|
container_issue | 3 |
container_start_page | 489 |
container_title | Experimental brain research |
container_volume | 192 |
creator | Rossi, Andrew F Pessoa, Luiz Desimone, Robert Ungerleider, Leslie G |
description | We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixated a central cue and discriminated the orientation of a colored target grating presented among colored distracter gratings in either the hemifield affected by the PFC lesion or the normal control hemifield. When the cue was held constant for many trials, task performance in the affected hemifield was nearly normal. However, performance was severely impaired when the cue was switched frequently across trials. The monkeys were unimpaired in a pop-out task with changing targets that did not require top-down attentional control. Thus, the PFC lesion resulted in selective impairment in the monkeys' ability to switch top-down control. In the second study, we used fMRI to investigate the neural correlates of top-down control in humans performing tasks identical to those used in the monkey experiments. Several fronto-parietal and posterior visual areas showed enhanced activation when attention was switched, which was greater on color cueing (top-down) trials relative to pop-out trials. Taken together, our findings indicate that both frontal and parietal cortices are involved in generating top-down control signals for attentive switching, which may then be fed back to visual processing areas. The PFC in particular plays a critical role in the ability to switch attentional control on the basis of changing task demands. |
doi_str_mv | 10.1007/s00221-008-1642-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2752881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1617600431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-fd1b49f3d280cf9b875f7d511596f3e4250ccb6825f14d0f253455b129cbe2b23</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EotPCD2ADEVLZBe51bMfeVEIVL6kSC-jachx7mipjD7anKv31eJRRCyxgZVn3O-c-DiEvEN4iQP8uA1CKLYBsUTDa3j0iK2QdbRFBPCYrAGQtk6iOyHHO1_tv18NTcoQKOpAcV0Ruk_MphmLmxsZU3G1jwtiUK9e4W2d3ZbpxtRBKinMTfWNKcaFMMTwjT7yZs3t-eE_I5ccP388_txdfP305f3_RWoGytH7EgSnfjVSC9WqQPff9yBG5Er5zjHKwdhCSco9sBE95xzgfkCo7ODrQ7oScLb7b3bBxo63dk5n1Nk0bk37qaCb9ZyVMV3odbzTtOZUSq8Gbg0GKP3YuF72ZsnXzbIKLu6yF6LseZf9fkAJVSjBRwdd_gddxl0K9gqbIsQMFUCFcIJtizvXI9yMj6H16eklP1_T0Pj19VzUvf9_1QXGIqwKnB8Bka2afTLBTvucoAldMycrRhcu1FNYuPUz4r-6vFpE3UZt1qsaX3yjUfZD3FATrfgE16btB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215130900</pqid></control><display><type>article</type><title>prefrontal cortex and the executive control of attention</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Rossi, Andrew F ; Pessoa, Luiz ; Desimone, Robert ; Ungerleider, Leslie G</creator><creatorcontrib>Rossi, Andrew F ; Pessoa, Luiz ; Desimone, Robert ; Ungerleider, Leslie G</creatorcontrib><description>We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixated a central cue and discriminated the orientation of a colored target grating presented among colored distracter gratings in either the hemifield affected by the PFC lesion or the normal control hemifield. When the cue was held constant for many trials, task performance in the affected hemifield was nearly normal. However, performance was severely impaired when the cue was switched frequently across trials. The monkeys were unimpaired in a pop-out task with changing targets that did not require top-down attentional control. Thus, the PFC lesion resulted in selective impairment in the monkeys' ability to switch top-down control. In the second study, we used fMRI to investigate the neural correlates of top-down control in humans performing tasks identical to those used in the monkey experiments. Several fronto-parietal and posterior visual areas showed enhanced activation when attention was switched, which was greater on color cueing (top-down) trials relative to pop-out trials. Taken together, our findings indicate that both frontal and parietal cortices are involved in generating top-down control signals for attentive switching, which may then be fed back to visual processing areas. The PFC in particular plays a critical role in the ability to switch attentional control on the basis of changing task demands.</description><identifier>ISSN: 0014-4819</identifier><identifier>EISSN: 1432-1106</identifier><identifier>DOI: 10.1007/s00221-008-1642-z</identifier><identifier>PMID: 19030851</identifier><identifier>CODEN: EXBRAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Anatomical correlates of behavior ; Animals ; Attention - physiology ; Behavioral psychophysiology ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain Mapping ; Cognition - physiology ; Corpus Callosum - anatomy & histology ; Corpus Callosum - physiology ; Corpus Callosum - surgery ; Cues ; Denervation ; Experiments ; Feedback - physiology ; Functional Laterality - physiology ; Fundamental and applied biological sciences. Psychology ; Macaca ; Magnetic Resonance Imaging ; Male ; Mental Processes - physiology ; Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration ; Neural Pathways - anatomy & histology ; Neural Pathways - physiology ; Neurology ; Neuropsychological Tests ; Neurosciences ; Parietal Lobe - anatomy & histology ; Parietal Lobe - physiology ; Photic Stimulation ; Prefrontal Cortex - anatomy & histology ; Prefrontal Cortex - physiology ; Prefrontal Cortex - surgery ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychomotor Performance - physiology ; Review ; Vertebrates: nervous system and sense organs ; Visual Cortex - anatomy & histology ; Visual Cortex - physiology ; Visual Perception - physiology ; Volition - physiology</subject><ispartof>Experimental brain research, 2009-01, Vol.192 (3), p.489-497</ispartof><rights>US Government 2008</rights><rights>2009 INIST-CNRS</rights><rights>Springer-Verlag 2009</rights><rights>US Government 2008 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-fd1b49f3d280cf9b875f7d511596f3e4250ccb6825f14d0f253455b129cbe2b23</citedby><cites>FETCH-LOGICAL-c618t-fd1b49f3d280cf9b875f7d511596f3e4250ccb6825f14d0f253455b129cbe2b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00221-008-1642-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00221-008-1642-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21059498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19030851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossi, Andrew F</creatorcontrib><creatorcontrib>Pessoa, Luiz</creatorcontrib><creatorcontrib>Desimone, Robert</creatorcontrib><creatorcontrib>Ungerleider, Leslie G</creatorcontrib><title>prefrontal cortex and the executive control of attention</title><title>Experimental brain research</title><addtitle>Exp Brain Res</addtitle><addtitle>Exp Brain Res</addtitle><description>We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixated a central cue and discriminated the orientation of a colored target grating presented among colored distracter gratings in either the hemifield affected by the PFC lesion or the normal control hemifield. When the cue was held constant for many trials, task performance in the affected hemifield was nearly normal. However, performance was severely impaired when the cue was switched frequently across trials. The monkeys were unimpaired in a pop-out task with changing targets that did not require top-down attentional control. Thus, the PFC lesion resulted in selective impairment in the monkeys' ability to switch top-down control. In the second study, we used fMRI to investigate the neural correlates of top-down control in humans performing tasks identical to those used in the monkey experiments. Several fronto-parietal and posterior visual areas showed enhanced activation when attention was switched, which was greater on color cueing (top-down) trials relative to pop-out trials. Taken together, our findings indicate that both frontal and parietal cortices are involved in generating top-down control signals for attentive switching, which may then be fed back to visual processing areas. The PFC in particular plays a critical role in the ability to switch attentional control on the basis of changing task demands.</description><subject>Anatomical correlates of behavior</subject><subject>Animals</subject><subject>Attention - physiology</subject><subject>Behavioral psychophysiology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain Mapping</subject><subject>Cognition - physiology</subject><subject>Corpus Callosum - anatomy & histology</subject><subject>Corpus Callosum - physiology</subject><subject>Corpus Callosum - surgery</subject><subject>Cues</subject><subject>Denervation</subject><subject>Experiments</subject><subject>Feedback - physiology</subject><subject>Functional Laterality - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Macaca</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Mental Processes - physiology</subject><subject>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</subject><subject>Neural Pathways - anatomy & histology</subject><subject>Neural Pathways - physiology</subject><subject>Neurology</subject><subject>Neuropsychological Tests</subject><subject>Neurosciences</subject><subject>Parietal Lobe - anatomy & histology</subject><subject>Parietal Lobe - physiology</subject><subject>Photic Stimulation</subject><subject>Prefrontal Cortex - anatomy & histology</subject><subject>Prefrontal Cortex - physiology</subject><subject>Prefrontal Cortex - surgery</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychomotor Performance - physiology</subject><subject>Review</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Visual Cortex - anatomy & histology</subject><subject>Visual Cortex - physiology</subject><subject>Visual Perception - physiology</subject><subject>Volition - physiology</subject><issn>0014-4819</issn><issn>1432-1106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkUtv1DAUhS0EotPCD2ADEVLZBe51bMfeVEIVL6kSC-jachx7mipjD7anKv31eJRRCyxgZVn3O-c-DiEvEN4iQP8uA1CKLYBsUTDa3j0iK2QdbRFBPCYrAGQtk6iOyHHO1_tv18NTcoQKOpAcV0Ruk_MphmLmxsZU3G1jwtiUK9e4W2d3ZbpxtRBKinMTfWNKcaFMMTwjT7yZs3t-eE_I5ccP388_txdfP305f3_RWoGytH7EgSnfjVSC9WqQPff9yBG5Er5zjHKwdhCSco9sBE95xzgfkCo7ODrQ7oScLb7b3bBxo63dk5n1Nk0bk37qaCb9ZyVMV3odbzTtOZUSq8Gbg0GKP3YuF72ZsnXzbIKLu6yF6LseZf9fkAJVSjBRwdd_gddxl0K9gqbIsQMFUCFcIJtizvXI9yMj6H16eklP1_T0Pj19VzUvf9_1QXGIqwKnB8Bka2afTLBTvucoAldMycrRhcu1FNYuPUz4r-6vFpE3UZt1qsaX3yjUfZD3FATrfgE16btB</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Rossi, Andrew F</creator><creator>Pessoa, Luiz</creator><creator>Desimone, Robert</creator><creator>Ungerleider, Leslie G</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>88J</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2R</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>prefrontal cortex and the executive control of attention</title><author>Rossi, Andrew F ; Pessoa, Luiz ; Desimone, Robert ; Ungerleider, Leslie G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-fd1b49f3d280cf9b875f7d511596f3e4250ccb6825f14d0f253455b129cbe2b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anatomical correlates of behavior</topic><topic>Animals</topic><topic>Attention - physiology</topic><topic>Behavioral psychophysiology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain Mapping</topic><topic>Cognition - physiology</topic><topic>Corpus Callosum - anatomy & histology</topic><topic>Corpus Callosum - physiology</topic><topic>Corpus Callosum - surgery</topic><topic>Cues</topic><topic>Denervation</topic><topic>Experiments</topic><topic>Feedback - physiology</topic><topic>Functional Laterality - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Macaca</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Mental Processes - physiology</topic><topic>Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration</topic><topic>Neural Pathways - anatomy & histology</topic><topic>Neural Pathways - physiology</topic><topic>Neurology</topic><topic>Neuropsychological Tests</topic><topic>Neurosciences</topic><topic>Parietal Lobe - anatomy & histology</topic><topic>Parietal Lobe - physiology</topic><topic>Photic Stimulation</topic><topic>Prefrontal Cortex - anatomy & histology</topic><topic>Prefrontal Cortex - physiology</topic><topic>Prefrontal Cortex - surgery</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychomotor Performance - physiology</topic><topic>Review</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Visual Cortex - anatomy & histology</topic><topic>Visual Cortex - physiology</topic><topic>Visual Perception - physiology</topic><topic>Volition - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossi, Andrew F</creatorcontrib><creatorcontrib>Pessoa, Luiz</creatorcontrib><creatorcontrib>Desimone, Robert</creatorcontrib><creatorcontrib>Ungerleider, Leslie G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Social Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Social Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Experimental brain research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossi, Andrew F</au><au>Pessoa, Luiz</au><au>Desimone, Robert</au><au>Ungerleider, Leslie G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>prefrontal cortex and the executive control of attention</atitle><jtitle>Experimental brain research</jtitle><stitle>Exp Brain Res</stitle><addtitle>Exp Brain Res</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>192</volume><issue>3</issue><spage>489</spage><epage>497</epage><pages>489-497</pages><issn>0014-4819</issn><eissn>1432-1106</eissn><coden>EXBRAP</coden><abstract>We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixated a central cue and discriminated the orientation of a colored target grating presented among colored distracter gratings in either the hemifield affected by the PFC lesion or the normal control hemifield. When the cue was held constant for many trials, task performance in the affected hemifield was nearly normal. However, performance was severely impaired when the cue was switched frequently across trials. The monkeys were unimpaired in a pop-out task with changing targets that did not require top-down attentional control. Thus, the PFC lesion resulted in selective impairment in the monkeys' ability to switch top-down control. In the second study, we used fMRI to investigate the neural correlates of top-down control in humans performing tasks identical to those used in the monkey experiments. Several fronto-parietal and posterior visual areas showed enhanced activation when attention was switched, which was greater on color cueing (top-down) trials relative to pop-out trials. Taken together, our findings indicate that both frontal and parietal cortices are involved in generating top-down control signals for attentive switching, which may then be fed back to visual processing areas. The PFC in particular plays a critical role in the ability to switch attentional control on the basis of changing task demands.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>19030851</pmid><doi>10.1007/s00221-008-1642-z</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4819 |
ispartof | Experimental brain research, 2009-01, Vol.192 (3), p.489-497 |
issn | 0014-4819 1432-1106 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2752881 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Anatomical correlates of behavior Animals Attention - physiology Behavioral psychophysiology Biological and medical sciences Biomedical and Life Sciences Biomedicine Brain Mapping Cognition - physiology Corpus Callosum - anatomy & histology Corpus Callosum - physiology Corpus Callosum - surgery Cues Denervation Experiments Feedback - physiology Functional Laterality - physiology Fundamental and applied biological sciences. Psychology Macaca Magnetic Resonance Imaging Male Mental Processes - physiology Motor control and motor pathways. Reflexes. Control centers of vegetative functions. Vestibular system and equilibration Neural Pathways - anatomy & histology Neural Pathways - physiology Neurology Neuropsychological Tests Neurosciences Parietal Lobe - anatomy & histology Parietal Lobe - physiology Photic Stimulation Prefrontal Cortex - anatomy & histology Prefrontal Cortex - physiology Prefrontal Cortex - surgery Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychomotor Performance - physiology Review Vertebrates: nervous system and sense organs Visual Cortex - anatomy & histology Visual Cortex - physiology Visual Perception - physiology Volition - physiology |
title | prefrontal cortex and the executive control of attention |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A34%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=prefrontal%20cortex%20and%20the%20executive%20control%20of%20attention&rft.jtitle=Experimental%20brain%20research&rft.au=Rossi,%20Andrew%20F&rft.date=2009-01-01&rft.volume=192&rft.issue=3&rft.spage=489&rft.epage=497&rft.pages=489-497&rft.issn=0014-4819&rft.eissn=1432-1106&rft.coden=EXBRAP&rft_id=info:doi/10.1007/s00221-008-1642-z&rft_dat=%3Cproquest_pubme%3E1617600431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215130900&rft_id=info:pmid/19030851&rfr_iscdi=true |