prefrontal cortex and the executive control of attention
We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixat...
Gespeichert in:
Veröffentlicht in: | Experimental brain research 2009-01, Vol.192 (3), p.489-497 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We review two studies aimed at understanding the role of prefrontal cortex (PFC) in the control of attention. The first study examined which attentional functions are critically dependent on PFC by removing PFC unilaterally and transecting the forebrain commissures in two macaques. The monkeys fixated a central cue and discriminated the orientation of a colored target grating presented among colored distracter gratings in either the hemifield affected by the PFC lesion or the normal control hemifield. When the cue was held constant for many trials, task performance in the affected hemifield was nearly normal. However, performance was severely impaired when the cue was switched frequently across trials. The monkeys were unimpaired in a pop-out task with changing targets that did not require top-down attentional control. Thus, the PFC lesion resulted in selective impairment in the monkeys' ability to switch top-down control. In the second study, we used fMRI to investigate the neural correlates of top-down control in humans performing tasks identical to those used in the monkey experiments. Several fronto-parietal and posterior visual areas showed enhanced activation when attention was switched, which was greater on color cueing (top-down) trials relative to pop-out trials. Taken together, our findings indicate that both frontal and parietal cortices are involved in generating top-down control signals for attentive switching, which may then be fed back to visual processing areas. The PFC in particular plays a critical role in the ability to switch attentional control on the basis of changing task demands. |
---|---|
ISSN: | 0014-4819 1432-1106 |
DOI: | 10.1007/s00221-008-1642-z |