Spatial and temporal reproducibility-based ranking of the independent components of BOLD fMRI data

Independent component analysis (ICA) decomposes fMRI data into spatially independent maps and their corresponding time courses. However, distinguishing the neurobiologically and biophysically reasonable components from those representing noise and artifacts is not trivial. We present a simple method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2009-07, Vol.46 (4), p.1041-1054
Hauptverfasser: Zeng, Weiming, Qiu, Anqi, Chodkowski, BettyAnn, Pekar, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Independent component analysis (ICA) decomposes fMRI data into spatially independent maps and their corresponding time courses. However, distinguishing the neurobiologically and biophysically reasonable components from those representing noise and artifacts is not trivial. We present a simple method for the ranking of independent components, by assessing the resemblance between components estimated from all the data, and components estimated from only the odd- (or even-) numbered time points. We show that the meaningful independent components of fMRI data resemble independent components estimated from downsampled data, and thus tend to be highly ranked by the method.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2009.02.048