Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite
Abstract Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 Poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2009-07, Vol.30 (19), p.3259-3270 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 Poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell-seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats ( n = 45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell-seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell-seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long-term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell-seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo . Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2009.02.035 |