Decoding the Epigenetic Language of Neuronal Plasticity

Neurons are submitted to an exceptional variety of stimuli and are able to convert these into high-order functions, such as storing memories, controlling behavior, and governing consciousness. These unique properties are based on the highly flexible nature of neurons, a characteristic that can be re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2008-12, Vol.60 (6), p.961-974
Hauptverfasser: Borrelli, Emiliana, Nestler, Eric J., Allis, C. David, Sassone-Corsi, Paolo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neurons are submitted to an exceptional variety of stimuli and are able to convert these into high-order functions, such as storing memories, controlling behavior, and governing consciousness. These unique properties are based on the highly flexible nature of neurons, a characteristic that can be regulated by the complex molecular machinery that controls gene expression. Epigenetic control, which largely involves events of chromatin remodeling, appears to be one way in which transcriptional regulation of gene expression can be modified in neurons. This review will focus on how epigenetic control in the mature nervous system may guide dynamic plasticity processes and long-lasting cellular neuronal responses. We outline the molecular pathways underlying chromatin transitions, propose the presence of an “epigenetic indexing code,” and discuss how central findings accumulating at an exponential pace in the field of epigenetics are conceptually changing our perspective of adult brain function.
ISSN:0896-6273
1097-4199
DOI:10.1016/j.neuron.2008.10.012