Building and assessing atomic models of proteins from structural templates: Learning and benchmarks

One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2009-09, Vol.76 (4), p.930-945
Hauptverfasser: Vallat, Brinda Kizhakke, Pillardy, Jaroslaw, Májek, Peter, Meller, Jaroslaw, Blom, Thomas, Cao, BaoQiang, Elber, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 945
container_issue 4
container_start_page 930
container_title Proteins, structure, function, and bioinformatics
container_volume 76
creator Vallat, Brinda Kizhakke
Pillardy, Jaroslaw
Májek, Peter
Meller, Jaroslaw
Blom, Thomas
Cao, BaoQiang
Elber, Ron
description One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.
doi_str_mv 10.1002/prot.22401
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67534563</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5221-b6e95754456c0d1d55f84d5d02e58e5ab98546cc78a788326dd53f6e01c4b8923</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eokvhwg9AOXFASvFn7HBAaitYkFYtgiIkLpZjT1pDEm9tB9p_X293W-DCybL8zDOvZxB6TvABwZi-XseQDyjlmDxAC4JbWWPC-EO0wErJmgkl9tCTlH5gjJuWNY_RHmkZbbiQC2SPZj84P51XZnKVSQlSur3lMHpbjcHBkKrQV5sm4KdU9TGMVcpxtnmOZqgyjOvBZEhvqhWYON25OpjsxWjiz_QUPerNkODZ7txHX9-_Ozv-UK9Olx-PD1e1FZSSumugFVJwLhqLHXFC9Io74TAFoUCYrlWCN9ZKZaRS5QPOCdY3gInlnWop20dvt9713I3gLEy5BNTr6EuMax2M1_--TP5Cn4dfmkrSYoqL4OVOEMPlDCnr0ScLw2AmCHPSjRSspGMFfLUFbQwpRejvmxCsNzvRm3Hp250U-MXfsf6guyUUgGyB336A6_-o9KfPp2d30npb41OGq_uaMu6Skkmhv50sNV8uv7TNCdff2Q3tZqja</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67534563</pqid></control><display><type>article</type><title>Building and assessing atomic models of proteins from structural templates: Learning and benchmarks</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vallat, Brinda Kizhakke ; Pillardy, Jaroslaw ; Májek, Peter ; Meller, Jaroslaw ; Blom, Thomas ; Cao, BaoQiang ; Elber, Ron</creator><creatorcontrib>Vallat, Brinda Kizhakke ; Pillardy, Jaroslaw ; Májek, Peter ; Meller, Jaroslaw ; Blom, Thomas ; Cao, BaoQiang ; Elber, Ron</creatorcontrib><description>One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 0887-3585</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.22401</identifier><identifier>PMID: 19326457</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Computer Simulation ; feature selection ; homology modeling ; mathematical programming ; Models, Molecular ; Protein Folding ; Proteins - chemistry ; Structural Homology, Protein ; structure determination</subject><ispartof>Proteins, structure, function, and bioinformatics, 2009-09, Vol.76 (4), p.930-945</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><rights>Copyright 2009 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5221-b6e95754456c0d1d55f84d5d02e58e5ab98546cc78a788326dd53f6e01c4b8923</citedby><cites>FETCH-LOGICAL-c5221-b6e95754456c0d1d55f84d5d02e58e5ab98546cc78a788326dd53f6e01c4b8923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.22401$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.22401$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19326457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vallat, Brinda Kizhakke</creatorcontrib><creatorcontrib>Pillardy, Jaroslaw</creatorcontrib><creatorcontrib>Májek, Peter</creatorcontrib><creatorcontrib>Meller, Jaroslaw</creatorcontrib><creatorcontrib>Blom, Thomas</creatorcontrib><creatorcontrib>Cao, BaoQiang</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><title>Building and assessing atomic models of proteins from structural templates: Learning and benchmarks</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>feature selection</subject><subject>homology modeling</subject><subject>mathematical programming</subject><subject>Models, Molecular</subject><subject>Protein Folding</subject><subject>Proteins - chemistry</subject><subject>Structural Homology, Protein</subject><subject>structure determination</subject><issn>0887-3585</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0Eokvhwg9AOXFASvFn7HBAaitYkFYtgiIkLpZjT1pDEm9tB9p_X293W-DCybL8zDOvZxB6TvABwZi-XseQDyjlmDxAC4JbWWPC-EO0wErJmgkl9tCTlH5gjJuWNY_RHmkZbbiQC2SPZj84P51XZnKVSQlSur3lMHpbjcHBkKrQV5sm4KdU9TGMVcpxtnmOZqgyjOvBZEhvqhWYON25OpjsxWjiz_QUPerNkODZ7txHX9-_Ozv-UK9Olx-PD1e1FZSSumugFVJwLhqLHXFC9Io74TAFoUCYrlWCN9ZKZaRS5QPOCdY3gInlnWop20dvt9713I3gLEy5BNTr6EuMax2M1_--TP5Cn4dfmkrSYoqL4OVOEMPlDCnr0ScLw2AmCHPSjRSspGMFfLUFbQwpRejvmxCsNzvRm3Hp250U-MXfsf6guyUUgGyB336A6_-o9KfPp2d30npb41OGq_uaMu6Skkmhv50sNV8uv7TNCdff2Q3tZqja</recordid><startdate>200909</startdate><enddate>200909</enddate><creator>Vallat, Brinda Kizhakke</creator><creator>Pillardy, Jaroslaw</creator><creator>Májek, Peter</creator><creator>Meller, Jaroslaw</creator><creator>Blom, Thomas</creator><creator>Cao, BaoQiang</creator><creator>Elber, Ron</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200909</creationdate><title>Building and assessing atomic models of proteins from structural templates: Learning and benchmarks</title><author>Vallat, Brinda Kizhakke ; Pillardy, Jaroslaw ; Májek, Peter ; Meller, Jaroslaw ; Blom, Thomas ; Cao, BaoQiang ; Elber, Ron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5221-b6e95754456c0d1d55f84d5d02e58e5ab98546cc78a788326dd53f6e01c4b8923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>feature selection</topic><topic>homology modeling</topic><topic>mathematical programming</topic><topic>Models, Molecular</topic><topic>Protein Folding</topic><topic>Proteins - chemistry</topic><topic>Structural Homology, Protein</topic><topic>structure determination</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vallat, Brinda Kizhakke</creatorcontrib><creatorcontrib>Pillardy, Jaroslaw</creatorcontrib><creatorcontrib>Májek, Peter</creatorcontrib><creatorcontrib>Meller, Jaroslaw</creatorcontrib><creatorcontrib>Blom, Thomas</creatorcontrib><creatorcontrib>Cao, BaoQiang</creatorcontrib><creatorcontrib>Elber, Ron</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vallat, Brinda Kizhakke</au><au>Pillardy, Jaroslaw</au><au>Májek, Peter</au><au>Meller, Jaroslaw</au><au>Blom, Thomas</au><au>Cao, BaoQiang</au><au>Elber, Ron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building and assessing atomic models of proteins from structural templates: Learning and benchmarks</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2009-09</date><risdate>2009</risdate><volume>76</volume><issue>4</issue><spage>930</spage><epage>945</epage><pages>930-945</pages><issn>0887-3585</issn><eissn>1097-0134</eissn><abstract>One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19326457</pmid><doi>10.1002/prot.22401</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2009-09, Vol.76 (4), p.930-945
issn 0887-3585
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719020
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Computer Simulation
feature selection
homology modeling
mathematical programming
Models, Molecular
Protein Folding
Proteins - chemistry
Structural Homology, Protein
structure determination
title Building and assessing atomic models of proteins from structural templates: Learning and benchmarks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A42%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20and%20assessing%20atomic%20models%20of%20proteins%20from%20structural%20templates:%20Learning%20and%20benchmarks&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Vallat,%20Brinda%20Kizhakke&rft.date=2009-09&rft.volume=76&rft.issue=4&rft.spage=930&rft.epage=945&rft.pages=930-945&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.22401&rft_dat=%3Cproquest_pubme%3E67534563%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67534563&rft_id=info:pmid/19326457&rfr_iscdi=true