Building and assessing atomic models of proteins from structural templates: Learning and benchmarks
One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2009-09, Vol.76 (4), p.930-945 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0887-3585 1097-0134 |
DOI: | 10.1002/prot.22401 |