Building and assessing atomic models of proteins from structural templates: Learning and benchmarks

One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2009-09, Vol.76 (4), p.930-945
Hauptverfasser: Vallat, Brinda Kizhakke, Pillardy, Jaroslaw, Májek, Peter, Meller, Jaroslaw, Blom, Thomas, Cao, BaoQiang, Elber, Ron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One approach to predict a protein fold from a sequence (a target) is based on structures of related proteins that are used as templates. We present an algorithm that examines a set of candidates for templates, builds from each of the templates an atomically detailed model, and ranks the models. The algorithm performs a hierarchical selection of the best model using a diverse set of signals. After a quick and suboptimal screening of template candidates from the protein data bank, the current method fine‐tunes the selection to a few models. More detailed signals test the compatibility of the sequence and the proposed structures, and are merged to give a global fitness measure using linear programming. This algorithm is a component of the prediction server LOOPP (http://www.loopp.org). Large‐scale training and tests sets were designed and are presented. Recent results of the LOOPP server in CASP8 are discussed. Proteins 2009. © 2009 Wiley‐Liss, Inc.
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.22401